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ABSTRACT

Observations suggest that solitary and other nonlinear waves might be a

source of wind shear hazard to safe flight and thus should be studied both ex-

perimentally and theoretically. A derivation of the Benjamin-Davis-Ono (BDO)

equation by a perturbation method is reviewed and extended to the case in

which the fluid is in sheared flow. For nonsheared flows, our solution for

the upper layer differs markedly from Benjamin's, which doesn't satisfy his

specified boundary conditions. The internal steady-state solitary wave, de-

scribed by the solution of the BDO equation, is compared with a boundary layer

solitary wave observed with NSSL's Doppler radar, a network of eight meteoro-

logical stations, and a 444-m-tall instrumented tower. Wave-induced vertical

transport of the horizontal momentum of the strongly sheared ambient air con-

tributed much to the observed wind perturbations and horizontal wind shear.

It is shown that agreement between the theoretical results of the weakly non-

linear theory of BDO and observations of wind and temperature at the surface

is :oincidental because wave advection and frictional drag markedly affect

wave properties. Only tall tower and Doppler radar measurements above the

ground provided the necessary data to determine that the observed solitary

wave was strongly nonlinear, and that it trapped thunderstorm outflow, which

leaked out the rear of the wave. Wave amplitude data, far above

(i.e., > 200 m) the ground, show fairly good agreement with numerical results

from strongly nonlinear theory. Wind shear produced by the solitary wave

appears to be significant, even though it is 60 km from the storm that ini-

tiated it. Because large-amplitude waves have amplitude-dependent speeds, and

because the wave-generating thunderstorm traversed the moving atmosphere at an

effective "supersonic" velocity, we derived a modified Mach relation to coln-

pute wave speed from the measured storm velocity and the convex shape of the

wave front. Comparison with wave speeds computed from tracking wave front

positions along lines of energy propagation paths shows fairly good agreement.
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List of Frequently-Used Symbols

c group velocity for a wave of finite amplitude (Eq. 2.26b)

c' Tne prime above and to the right of c denotes the group velocity

of the wave in the medium advecting the wave (p. 73).

cm group velocity of wave (in a still medium) computed using the mod-

ified Mach relation (Eq. 3.5)

co  phase speed of an extremely long wavelength disturbance of infini-

tesimal amplitude. It is the eigenvalue of the eigenfunction

equation (Eq. 2.12c).

coo a scaling velocity equal to the speed of a linear wave of ex-

tremely long length propagating in a medium composed of two homo-

geneous layers having a A vo difference in evo equal to the total

change in 0vo of the actual atmosphere (p. 100)

ct group velocity (in a still medium) obtained by tracking the wave

position along the ray as a function of time (Table 3.1, p. 74)

CI  the increase in wave speed (group velocity) caused by finite wave

amplitude (p. 26)

0 p the direction of the wave's perturbation velocity (Fig. 5b, p. 50)

f a factor of the stream function dependent upon x and t (p. 16)

g acceleration due to gravity (p. 11)

H height of the upper boundary where w = 0 (p. 101)

H{f} Hilbert transform of the function f (p. 8)

h depth of stratified layer lying beneath an open ended neutral

layer (p. 7)

he the effective height of the radar beam (p. 82)

hs  vertical scale of lower layer stratification (p. 3)
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vector wave number (p. 11)

£I/2 : 2X wave's half-amplitude width perpendicular to the wave front

(p. 63)

N Brunt-Vaisala" frequency (p. 17)

r radial distance along the radar beam

s = hs reciprocal of vertical scale of lower layer stratification (p. 3)

t time (p. 4)

te equivalent time to describe changes in wave characteristics along

its front (p. 87)

u horizontal wind component perpendicular to front (p. 13)

Ua,va ambient wind averaged over a 10-minute period (p. 41)

UoV o  ambient wind components immediately prior to the wave (p. 45)

ut,vt velocity due to turbulence (Eq. 3.3)

u2,w2 the horizontal u2 and vertical w2 components of wind perturbation

produced by the wave if it were propagating in the x direction in

a shearless environment (Eq. 3.3)

Vro Doppler velocity of the ambient air immediately before the wave

(p. 81)

Vs  storm speed (Eq. 3.5)

vKH the vector velocity perturbation generated by Kelvin-Helmholtz

waves (Eq. 3.3)

p the peak speed of the wave's perturbation velocity (p. 57)

Vrp Doppler velocity at the peak of the wave (Table 3.2, p. 83)

vr(r) Doppler (radial) velocity as a function of range r (p. 74)

V to the speed, along the wavefront, of trapped thunderstorm outflow

(Eq. 3.3)
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12 the two component (u2 ,w2 ) vector velocity perturbation of the wave

(Eq. 3.3)

w vertical wind component (p. 13)

x horizontal coordinate axis perpendicular to wave front (p. 4)

x - x-ct (p. 32)

z vertical coordinate axis (p. 15)

zo  height of stagnate air (p. 93)

parameters in the equation of wave evolution (Eq. 2.24a)

y angle between source path and a liiie tangent to wave front (p. 12)

AUo,AVo  change in u,v due to vertical transport of horizontal momentum,

(p. 84)

6 vertical displacement produced by wave (p. 4)

Im  maximum vertical displacement of air produced by the wave (p. 3)

= h / (p. 15)

6 e  equivalent potential temperature

Ovo the virtual potential temperature of the ambient air (p. 17)

X wave's half-width at half amplitude (p. 6)

Pangle that ray path makes with storm path

scaled and translated x coordinate (p. 15)

PO density of incompressible fluid having an N equivalent to that of

the atmosphere (p. 16)

-U scaled time coordinate (p. 15)

c median azimuth of a sector over which Doppler velocities were

averaged (p. 77)

F azimuth of a line tangent to the front (Fig. 5a)

s azimuth of storm track (p. 72)

(z) the z dependent part of the perturbation stream function

vii



'stream function in coordinate system translating with group veloc-

ity c (Eq. 2.35a)

perturbation stream function for the variables ti, w, etc. (p. 29).

*max = "o peak amplitude of the perturbation stream function for variables

u, w, etc. (p. 98)

peak amplitude of the perturbation stream function 'I (Eq. 2.28a)

f( ,T) (z) first-order perturbation stream function for the perturbdtion

variables ul, wl, etc. (p. 16)

()0 perturbation stream function in the lower stratified layer

(Eq. 2.29)
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1.0. INTRODUCTION

Research at the National Center for Atmospheric Research and the Univer-

sity of Chicago has made the aviation community aware of wind shear hazards

accompanying damaging downdrafts, currently called downbursts or, if of small

diameter (i.e., 0.4 to 4 km), microbursts (Wilson et al., 1984; Fujita and

Wakimoto 1983). However, these are not the only weather phenomena that can

contain wind shear dangerous to an aircraft on its ascent from or descent into

air terminals. Tornadoes and/or their larger diameter parent circulations,

called mesocyclones, have caused crashes. A headwind change of 15 n s- I

(30 kt) or more could be expected in 1 km of flight through a mesocyclone

(Doviak and Lee, 1985). On October 6, 1981, a Fokker F-28 commercial aircraft

was observed exiting a thunderstorm cloud base at the location of a tornado,

which sheared a wing from its fuselage (Wolliswinkel and Bierdrager, Private

Communication).

Hazardous low-altitude shear has been associated with mountain lee waves,

sea breezes, cold frontal passages, and more recently, with large-amplitude

gravity wave disturbances. Gossard (1983) observed gravity waves that had

wind speed changes of as much as 20 m s- 1 (40 kt) in a distance of 5 km

(3 mi).

In this report, we focus our attention on gravity waves that can have

large amplitude yet short width (wavelength) and consequently strong shear,

but which can travel hundreds of kilometers from the source with relatively

little attenuation of possibly hazardous shear. These gravity waves, known as

solitary waves, have been recently identified as a significant source of low-

altitude shear (Christie and Muirhead, 1983a).

A solitary wave is a remarkably large-amplitude, single-crested, wave,

first observed in the ocean where ships, sailing on an otherwise smooth sea,
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are struck violently by a mountainous wave, which can send the vessels on

their beam ends and sweep their decks from stem to stern. All this can occur

in a matter of 5 minutes, after which the sea returns to its originally peace-

ful condition (Corliss, 1977).

It is not known whether these oceanic solitary waves are ever accompanied

by atmospheric disturbances of similar form, but there is evidence that some

of these ocean rogue waves occur with wind shifts. Furthermore, solitary

ocean waves that strike the west coast of South Anerica and the so-called

Death waves on the west coast of Ireland are said to be precursors of storms

(Corliss, 1917). A storm-generated atmospheric wave might induce an ocea,'ic

solitary wave, although subaqueous volcanic activity is more commonly thought

to be responsible. The ease with which solitary waves can be generated in the

laboratory (Maxworthy, 1980) suggests that large-amplitude nonlinear waves

might be a commonly occurring feature in the lower atmosphere whenever suit-

able boundary layer conditions exist and sources are active.

The first definitive observations of the atmospheric solitary waves were

made in 1976 with the Australian National University's Warramunga Infrasonic

Array near Tenant Creek in northern Australia (Christie, et al., 1978). At-

mospheric solitary waves are observed to occur either as single isolated waves

of elevation or, more commonly, as groups of spatially separated amplitude-

ordered sequences of solitary waves. In their early stage of formation, they

are partially resolved waves associated with the actively evolving lea-'ing

edge of a disintegrating longer wave disturbance (Christie and Muirhead,

1983a). The number of waves that evolve depends on the scale size of the ini-

tial disturbance--the larger the scale size, the larger the number of waves

that can be generated (Whitham, 1974, Ch. 14, p. 595). Christie and Muirhead

(1982) showed, through numerical simulations, how disturbances of long wave-

length evolve into short, solitary ones.
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Individual solitary waves are most commonly observed with amplitudes be-

tween 300 and 1000 m (900 to 3,000 ft) and effective horizontal lengths rang-

ing from 0.5 to 6 km (0.3 to 5 mi). They usually propagate with speeds

between 6 and 16 m s-1 (12 and 32 kt) but, on occasion, they have been ob-

served to propagate with speeds exceeding 30 m s-1 (60 kt). Atmospheric soli-

tary waves propagate along horizontal waveguides formed by layers of strongly

positive potential temperature lapse rates. Solitary waves can grow in ampli-

tude as their width decreases, thereby increasing shear, and their speed ex-

ceeds the speed of long-wavelength disturbances (e.g., a bore) by an amount

proportional to wave amplitude. Thus, solitary waves have supercritical

speeds.

Long-wavelength disturbances of small amplitude experience little disper-

sion and accompanying change in shape, resulting in long lifetimes. Short-

wavelength disturbances of small amplitude, on the other hand, experience

significant dispersion and thereby disintegrate quickly. However, long-wave-

length disturbances of large amplitude break, whereas large-amplitude solitary

waves of permanent form must have short-wavelength. Thus, the tendency of a

large-amplitude disturbance to steepen and to break because of nonlinearity is

offset by the dispersion, which tends to smooth the disturbance. This inverse

relation between wave amplitude and its width (often the half-amplitude width

is used to measure width) required for solitary waves ceases when the wave's

displacement amplitude 6m increases to a height about equal to the scale hs of

stratification, at which point recirculating air appears in the wave, causing

the width to increase (Tung et al., 1982).

Although the evolutionary growth of solitary waves is observed in numeri-

cal model simulations, it is yet to be confirmed that such growth occurs in

the atmosphere. Furthermore, it remains to be proved by observation that such
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waves do evolve to large amplitude and short wavelengths that they constitute

a hazard to aircraft. We show, later in this report (Chapter 4), results of

observations suggesting that shear generated by solitary waves can have a sig-

nificant effect on aircraft performance. Solitary waves that produce low-

altitude wind shear require strong stability of the atmosphere close to the

earth's surface and near-neutral stability above (Crook, 1986). Thus it is

likely that many significant events may pass unobserved because such stable

conditions usually occur in the late night or early morning hours when visual

observations are sparse. However, the cold air outflow of a thunderstorm can

also form a stable layer, and then the outflow of other thunderstorms passing

over this layer can initiate waves (Doviak and Ge, 1984). Solitary waves

might be one of the most insidious forms of wind shear because they usually

occur, without warning, as unexpected clear air disturbances far from any

storms. Yet they can harbor shears that might be destructive to aircraft and

crew.

The solitary wave, by its essentially nonlinear nature, occupies a unique

place in the development of a theory of wave propagation in fluids. The clas-

sical solitary wave was first observed by the Scottish scientist and engineer

John Scott Russell (1840), on the free surface of shallow water in a canal of

uniform depth hs . Although he spent years trying to understand this solitary

wave, his observation remained unexplained in his lifetime. Subsequently,

Boussinesq (1871) and Rayleigh (1876) independently derived approximations for

the speed of propagation c and the form 6(x) of the vertical displacement pro-

file at the free surface. They found, to first order in the relative ampli-

tude a/ = hs << 1, a solitary wave solution described by

6(x) = a sech 2 1 (x-ct) (1.1)
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where a is the maximum vertical displacement, c the wave speed, and w1 the

wave width, measured perpendicular to the wave front, and is determined both

by the wave amplitude and characteristics of the canal.

It was not until 1895 that two Dutch scientists (Korteweg and de Vries,

1895) derived their often-cited nonlinear differential equation, which pre-

cisely describes the characteristics of solitary waves propagating in one di-

rection on the surface of a shallow canal, and which is the theoretical con-

firmation of Scott Russell's observations. Korteweg and de Vries showed that

the time evolution of small, but finite amplitude, dispersive shallow water

waves is described, in the first approximation, by the nonlinear partial dif-

ferential equation (KdV equation)

2v

L6+3c~ 0 chs 3l
+ + 0, (1.2)
oat T ax 6 3

where co = (ghs)1/2 is the phase speed of a wave of infinitesimal amplitude

(Whitham, 1974, Ch. 14, p. 463).

The observations of Scott Russell and the KdV equation were not widely

appreciated until the significance of solitary waves as an important stable

state of some nonlinear systems was realized in the mid-1960's. A crucial

discovery in the development of the KdV theory was that solitary waves of dif-

ferent amplitudes, and hence of different speeds, pass through one another

without any permanent loss of identity and suffer only phase shifts, even

though nonlinear distortion is quite significant during the interaction. This

phenomenon was discovered from numerical solutions of the KdV equation by

Zabusky and Kruskal (1965), who coined the term "soliton" for any solitary

wave having this property. The solitary wave has since appeared in many
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fields of applied mathematics such as meteorology, fluid mechanics, electronic

engineering, and laser physics.

Korteweg and de Vries also showed that Eq. (1.2) describes steady propa-

gating, periodic waves that can be described mathematically by the square of a

Jacobian elliptic cosine function cn(xlm) for which they coined the term

"cnoidal" waves. The modulus m of the elliptic function is equal to

(ay 2/h3) /2 where Y is a characteristic horizontal scale of the wave (Whitham,

1974, Ch. 14, p. 456). The length scale x is a rough measure of wave width w

and not necessarily of the distance (which could be vastly larger than x) be-

tween wave crests. Thus the smaller is X, the smaller is the width of the

wave, but waves could be spaced far apart. In the limit as m + 0, the ellip-

tic cosine reduces to an ordinary cosine wave in which the wavelength (i.e.,

the separation between crests) x = 2TV£-. When m 1 1, the wavelength x be-

comes infinite and the elliptic cosine becomes the hyperbolic secant function

(i.e., Eq. 1.1) in which wave width w = (4h 3/3a) 1/2 and wave speed ce
co(1+3a/2hs). These latter relations for wave width and speed show, for waves

of permanent form in shallow water, that the width of larger amplitude waves

is shorter and wave speed is faster.

Since the 1950's, a number of investigations have been carried out on in-

ternal solitary waves in a fluid of finite depth. Keulegen (1953) and Long

(1956) pioneered this field by investigating solitary waves in a system with

two layers of different densities bounded by two rigid planes at the top and

bottom surfaces. Peters and Stoker (1960) used a free surface at the top of

the upper layer. The theory of internal solitary waves in fluids, whose den-

sity varies continuously with height, has been developed by Peters and Stoker

(1960), Ter-Krikorov (1963), Long (1965), Benney (1966), Benjamin (1966) and

several others. More recently, Egger (1983) gave a theoretical analysis of
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internal atmospheric solitary waves in a two-layer fluid of finite depth, with

a fixed upper boundary, by using the KdV-Burgers equation, in which the second

derivative term is added to the KdV equation as a dissipation term. However,

the finite depth of the fluid, implying the influence of both lower and upper

boundaries, is an essential specification of theoretical models treated in all

these works.

Levi-Civita (1925) proved the mathematical existence of internal, two-

dimensional, periodic waves of finite amplitude and permanent form in water of

infinite depth. Benjamin (1967) and Davis and Acrivos (1967a) independently

presented the results of theoretical and experimental investigations of an en-

tirely new class of internal solitary waves for the case where the fluid den-

sity varies only within a thin layer of thickness h, which is much smaller

than the total depth and smaller than the effective horizontal length scale

X(s = h/A << 1). Since we shall not, in this work, deal with periodic waves,

we henceforth choose the symbol A to represent the horizontal scale of the

wave. Furthermore, in situations where there might be a train of n quasi-

periodic solitary waves, An characterizes the width of each wave and not the

distance separating them. Benjamin (1967) found a steady-state, periodic

solution for displacement 6 of streamlines in a two-fluid system in which the

upper fluid of constant density extends to infinity above a lower fluid of

depth h, whose density varies with height above a horizontal rigid surface.

Its limit form of infinite period is the solitary wave solution,

f(x)= 2 X 2 ' (1.3)
x + X

where a is the wave amplitude (or displacement) and A the half-width at half-

maximum amplitude.
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Ono (1975) developed the theory for the time-dependent problem and de-

rived an evolution equation for unsteady-state deep-fluid solitary waves, us-

ing the nonlinear perturbation method. The evolution equation takes the fol-

lowing form:

f f a2
- Hf} = 0 (1.4)

where Hjf} denotes the Hilbert transform of f, and T and are scaled time and

space coordinates (Section 2.2). Equation (1.4) has been named the Benjamin-

Davis-Ono (BOO) equation, which is the deep-fluid counterpart of the KdV equa-

tion. An N-soliton solution of (1.4) has been found recently by Chen et al.,

(1979) and by Matsuno (1979).

The possible existence of atmospheric solitary waves was suggested by

several authors in the late 1940's and early 1950's. The first direct evi-

dence for atmospheric solitary waves appears to be the detailed description by

Abdullah (1955) of a large amplitude disturbance that propagated over Kansas

during the early daytime hours (0700 CST-1100 CST) of June 29, 1951. This

disturbance, which produced a surface pressure increase of 3.4 mb, took the

form of an elevated disturbance propagating on an inversion at a height of

about 2 km AGL. The disturbance wavelength was about 150 km and the wave was

observed to travel with approximately constant speed between 18 and 24 m s1

over a distance of nearly 800 km. There was a cold front extending over Colo-

rado, New Mexico, and Oklahoma. Abdullah concluded that the genesis of the

solitary wave was due to the interaction between the cold front and an inver-

sion layer. He also mentioned that there were some scattered showers in the

region where this wave passed, and it is reasonable to assume that these
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showers resulted from the condensation caused by lifting the air over the

wavecrest.

A survey of long-period digital records from an ultra-seilsitive micro-

barograph array led to the initial discovery (Christie et al., 1978) of short

wavelength internal solitary waves in the planetary boundary layer. The

boundary layer solitary waves, commonly called "morning glories," observed re-

cently in Australia have an effective wavelength of only a few kilometers

(Clarke, 1972; Neal et al., 1977; Christie et al., 1979; Christie et al.,

1981; Clarke et al., 1981). The morning glory is a wind squall or succession

of wind squalls, frequently accompanied by one or more single-humped pressure

disturbances, and is visually characterized by a long roll-cloud or series of

such clouds. It often occurs in the early morning in the Gulf of Carpentaria

area of northern Australia. The detailed studies of this type of phenomenon

observed at Tennat Creek and Burketown in Northern Australia (Christie et al.,

1979) have shown that these nonlinear wave disturbances occur as individual

isolated solitons, and as amplitude-ordered solitary wave packets which propa-

gate as predominantly interfacial disturbances along a boundary-layer inver-

sion. Clarke et al. (1981) concluded that the morning glory is an undular

bore propagating on the nocturnal and/or maritime inversion. Its source re-

gion appears to lie where a deeply penetrating sea-breeze front interacts with

a developing nocturnal inversion.

Similar phenomena are also observed over inland areas of the North Ameri-

can continents (Haase and Smith, 1984; Doviak and Ge, 1984). However, instead

of sea-breeze fronts, thunderstorms are more likely to be the source of these

solitary waves. A detailed case study of a morning glory in the early morning

of June 9, 1982, in central Oklahoma, has been given by Haase and Smith

(1984). The authors interpreted this disturbance to be an internal undular

-9-



bore propagating within a low-altitude stable layer topped by a deeper upper

layer of near neutral stability. Satellite imagery shows that the disturbance

was associated with a cluster of rapidly growing intense thunderstorm cells

several hundred kilometers to the north.

The mechanisms that lead to the production of solitary waves in the at-

mosphere are, generally speaking, not well understood at the present time.

The observations suggest that the genesis of atmospheric solitary wave dis-

turbances may be attributed to a wide variety of processes including middle-

latitude cold frontal activity (Abdullah, 1955), the interaction of katabatic

flow with the nocturnal inversion (Christie et a]., 1978), deep penetrating

sea-breeze fronts (Clarke et a]., 1981; Christie and Muirhead, 1983a), and in-

tense thunderstorm activity (Doviak and Ge, 1984).
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2.0. THEORETICAL ANALYSIS

2.1. Fundamentals of Linear and Weakly Nonlinear Wave Theory

For almost any flow in an inviscid fluid we can start with the equation

of motion,

p+ 1 ++ (U, .v)u -_ Pg (2.1)

which is nonlinear. The solutions of (2.1) can describe waves that evolve and

break due to the nonlinear term. For the purposes of analysis, we naKe ap-

proximations to simplify this basic equation.

At this point, we draw attention to two important approximations in the

theory of wave propagation. The internal waves that we shall describe can be

sorted into two types: (i) linear, small-amplitude, periodic waves and,

(ii) weakly nonlinear long waves (long waves so-called because their hori-

zontal wavelengths are much larger than the depth of the density inhomo-

geneity). For the first type (see Yih, 1960), the equations of motion are

linearized by assuming that the wave amplitude is much smaller than the depth

of the region in which density (or potential temperature for atmospheric

waves) changes significantly and that products of perturbations are assumed

negligible compared with linear terms. The subsequent development yields an

infinite number of modes of linear dispersive traveling periodic waves. This

approximation has been commonly used in fluid flow studies, which show that

the solutions of Eq. (2.1) take the following form:

: /ei (. ), (2.2)
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which is a good approximation for extremely small-amplitude waves. Neverthe-

less, many waves observed in the oceans and the atmosphere have appreciable

amplitude and, as a consequence, are nonsinusoidal. Because of wave disper-

sion, it is not possible to find a solitary wave of permanent shape from the

linearized equations of motion. On the other hand, the analysis of weakly

nonlinear, long internal waves, yields solitary waves of permanent form (Ben-

jamin, 1966).

Generally speaking, there are two important characteristics of a wave

disturbance. One is nonlinearity, which steepens the wave's leading edge, in-

creases shear, and, if sufficiently strong, causes the wave to break with

rapid dissipation of wave energy. The other is dispersion, which smooths

sharpness because the steepened wave comprises many Fourier components that

propagate at different speeds. In this case, the wave cannot maintain its

sharpness and large amplitude. Considered together, a balance of these two

opposing tendencies may permit permanency of large-amplitude strong shear dis-

turbances. Weakly nonlinear long waves are characterized by two small parame-

ters: -y, which measures nonlinearity, is the ratio of wave amplitude a to the

vertical scale hs of the stratified layer; c = hs/x (the ratio of hs to the

wavelength scale X) measures dispersion.

When the stratified layer occupies the entire depth of a shallow fluid,

the appropriate evolution equation is the KdV equation (1.2) for which the

balance between nonlinearity and dispersion requires that y = 2 (see, for in-

stance, Benney, 1966). When the fluid extends vertically to infinity and the

stratified layer inside it is shallow, the appropriate evolution equation is

the BOO equation for which the balance between nonlinearity and dispersion

requires that E be linearly related to y (i.e., e = ky, where k is a constant

of proportionality that is dependent upon the temperature profile and wave
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mode number [Benjamin, 1967]. Koop and Butler (1981) presented the results of

an experimental investigation characterizing solitary waves in terms of their

shape and amplitude-wavelength scale relationship for shallow and deep-water

configurations.

2.2. The Governing Equations

We consider two-dimensional motions of a dissipationless incompressible

fluid that is stably stratified in the vertical direction. The governing

equations in the stationary Cartesian frame (i.e., earth frame) are the Na-

vier-Stokes equations:

au+ uLU + _ i ,2
t x z p(2.3)

a ax az P az

and the mass continuity equation which, for incompressible fluids, provides

the two independent equations:

P + uiP + w paz = 0, (2.5)t ax az

au + 0 (2.6)
ax z

where u and w are, respectively, the horizontal and vertical velocities, p is

the pressure, and p is the density.

In this section, we follow a derivation of the BDO equation by a singular

perturbation method (Ono, 1975), but extend it to the case in which the fluid

is in sheared flow. The ambient fluid considered here is separated into (i) a
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stably stratified and sheared lower region (0 z < h) for which a long-wave

approximation can be made; and (ii) the homogeneous upper region (z h) in

which the wave motion is coupled to that in the lower region (Fig. 1). Al-

though the inhomogeneous layer has a depth h, it is the vertical scale hs of

the inhomogeneity that is of crucial importance in determining wave proper-

ties. The vertical scale, usually less than h, is roughly the depth within

which density changes sharply with height. In other words, it is the thick-

ness of the layer within which the Brunt-Valsala frequency is significantly

higher than in the surrounding regions.

(a) (b)

z

am1/2

z=h- -- -- -- - - -- - - -am
T_ _- Streamlines

0 Po 0 N x

Figure la. Profiles of density p0 and Brunt-Vaisala frequency N.

lb. Wave characteristics (of a streamline) for a long wave (i.e.,

A>>h) of finite amplitude. n is the asymptotic height of the

streamlines and 6m is the maximum displacement.

2.2.1. Lower-layer equations

In order to reduce the equations of motion to a manageable form, we em-

ploy perturbation theory and seek modified equations applicable to waves whose

length is long (as observed for the case under discussion herein) compared
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with the vertical scale hs of the stable layer. By following the procedure

outlined by Dodd et al. (1982, Chapter 5), we use the dispersion relation

= kco(1-olkI), appropriate for long waves in fluids of infinite depth (Ben-

jamin, 1967) to derive the coordinate transformations:

= E(x- cot), (2.7a)

Se2 t, (2.7b)

z = z, (2.7c)

where k is the wavenumber, co is the phase speed of extremely long (i.e.,

k + 0) infinitesimal waves in the stratified flow, and a is a constant. For a

two fluid media having density p1 in a lower layer of depth hl and P2 in the

I P2infinitely deep upper layer, a = -(-) h1 . The purpose of transforming the

scales of space and time is to extract, from the Navier-Stokes equations, sim-

plified equations that are relevant to the description of the wave phenomena

of interest (i.e., waves of characteristic length x large compared with hs).

In order to have derivatives with respect to , when scaled by hs, to be of

the same order of magnitude as the functions differentiated (Benjamin, 1967),

we set c = hs/X (a definitive specification of X is given following

Eq. (2.29)).

The expansion of the dependent variables, consistent with the above co-

ordinate transformation, can be made in terms of the small parameter e so that

u = U(z) + I Enun (,z, T) (2.8a)
n=1

00= n+1

n=1 n



P 0 (z) + C Pn (,z, T) (2.8c)
n=1

P p0 (Z) + E n p(,zT) (2.8d)
n=1l

where uo(z) is the velocity of the sheared background flow, and po(z) and

po(z) are the background pressure and density. In view of the continuity

Eq. (2.6), the expansion of w starts from the second order of e.

Expressing the governing equations in terms of the stretched coordinates

C,z,T, substituting Eq. (2.8) into them, retaining only the terms to lowest

order in c, and reducing the system of four equations to one in terms of wl,

the following equation can be obtained:

~d 0
SWlduo g PoP (c u f d,] + f wdE) d p0

-5-z 0o0-Uo T -ToWld fWld = 0. (2.9)

By assuming a product separation of the variable w, in the form

W (CZT) = af( E, T) (z), (2.10a)

we can express Eq. (2.9) solely in terms of z as

z [Po ) d Uo) d poz (co- d- + d P P- - - U) d 0. (2.10b)

The variable I = f(C,T),(z) defines a stream function from which all vari-

ables can be derived. That is,

W -- (2.11a)
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u1  5 (2.1l )

3 * 1 d u o
p1  - Po (uo-co) 3z + PoA - (2.11c)

1 dp(=dz-" (2.lld)

By using the transformation = [po/Po(O)] 1/2 we can transform Eq. (2.10b)

into

r o 2 0 00 PO__- , (21a
*+ ~-(- U) 2- 0 u- 0  (- ]*[4 0 "Po PO Uoo - (Uo0o PO (uo-co)

where the primes denote differentiation with respect to z. In this differen-

tial equation all parameters of the fluid appear in the single coefficient of

the i term, so then we can estimate the values of the various terms to show

that some can be ignored compared with the others.

In order to make the comparison using atmospheric variables, we note that

Eq. (2.1) applies to the atmosphere if the Coriolis force can be neglected.

It can be shown that for the disturbance wavelengths (approximately a few kil-

ometers) to be considered in this report, Coriolis force is negligible. We

now relate the density po of the incompressible fluid to the virtual potential

temperature 0vo of the moist atmosphere, which has the same Brunt-V'isli" fre-

quency N. Then both media are dynamically similar. It can be shown that it

is the parcel's virtual potential temperature, a conserved quantity for un-

saturated moist adiabatic processes, that determines the stability of a moist

atmosphere. This temperature is defined by

T 1000)0.286(1 - 0.23m) S
vo vo p
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where rn is the mixing ratio, p the total air pressure, and TV the virtual tem-

perature. The required relationship is then

(z Po (o ) evo (0)
p0 (z) -z)

where po is the density of the incompressible fluid having the equivalent

stability of the atmosphere. Substituting for p0 in terms of ovo into

Eq. (2.12a), we obtain

1 v° 3 ev°o2 Bvo u - u + g2 ]  0. O .+[y0v V- To + 0 vo(Uo co) (Uo- o _ vo(Uo-C°
0 +o 0 0 - 0- 0

2 0v0~ (uc) u-c~ ~ u~,-~,)(2.12b)

Now changes in evo are small compared with evo(O ) so that * is a good ap-

proximation. For data that we shall consider, the first three terms in the

brackets are negligible compared with the other two so that the above reduces

to

N+ [ N2  2 U; 0 (2.12c)

(u0-c0) (u0 - c0 )

where 12 E go' /0B. The above simplifications are consistent with the Bous-vo vo*

sinesq approximation, and Eq. (2.12c) is the Taylor-Goldstein equation for a

Boussinesq fluid (Tung et al., 1981). Using Eq. (2.11d) we derive the fol-

lowing expression for the perturbation ev1 in virtual potential temperature:

6 d evo
°vl = (Io-Co T0 (2.12d)

Equation (2.12c) is not solved easily, especially for vertical profiles

of ovo and uo encountered in practice. Hence, numerical solutions are
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suggested. However, in order to better understand the interrelationships be-

tween atmospheric variables and the wave parameters (e.g., amplitude, speed),

we seek an analytical solution. But to have the mathematical development

tractable we ignore wind. Thus

+ N2 0 (2.12e)
c0

will be used to characterize the eigenfunction equation for solitary wave per-

turbations. However, as crude as the neglect of u" in Eq. (2.12c) might ap-

pear to be, the work of Tung et al. (1981) suggests that the dominant mode

solitary wave solution to the nonlinear evolution equation is, except for

increases in wave speed, unchanged by the presence of shear. Thus, our neg-

lect of the u" term might not impose limitations as severe as first thought.

Nevertheless, further work will be required to determine the effect of wind

curvature on the solitary wave evolution.

We assume that the dimensions of the stream function *1 are contained in

f( ,T), so that, without loss of generality, we can set (h) = 1 . This is

just a normalization of and does not specify a boundary condition on wI at

z = h. Now z = 0 is assumed to be the level of the ground where vertical ve-

locity must be zero so that

@(0) = 0 (2.12f)

is a boundary condition. To obtain a completely specified solution to (2.12),

we need to specify an additional boundary condition. This is obtained in Sec-

tion 2.2.3 where we match vertical velocity and its derivative across the
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interface that separates the inhomogeneous layer 0 4 z h and the layer z > h

where evo is assumed constant.

Now proceeding to the next order of c, and invoking the same approxima-

tions, it can be shown that

(2 - 2 (T ) w2 = J(f'€)

where o

S(f 3l)f 1 [ ](,')2  2 ' '
c 0  vo T co  o IV0

We now show that w2 , the second-order solution, and its derivative w at

z = h, as well as F(z), determine the ,T dependence of f(E,T). To derive the

equation governing f(F,T), we apply the following solvability condition (Ono,

1975):

h gw2  h
f[(w'/o)' - 2o] dz = f J(f,0)0 dz (2.14)
0 eo61c2 0

vo o

which, when satisfied, avoids a resonant solution of Eq. (2.13). Alternately,

the equation governing f(E,T) can be obtained by applying the boundary condi-

tions on w2 to the integral solution of Eq. (2.13), a procedure followed by

Benjamin (1967, p. 571). Now integrating both sides of Eq. (2.14) by parts,

and applying the boundary conditions, 0 = , w2 = 0 at the surface z = 0,

Eq. (2.14) becomes
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c e(h) [(E,h,-r) '(h) -w ( ,h.T)]

[2o-l(h)0'(h)-2fho1(') 2 dz] -+ 13 ( (2.15)
h f- af-1 €vo 0 vo vo

-3o V(0.)3 dZ-26- (h $(h)} f'

Now it is obvious that if w2 (F,h,T)and its first derivative at the interface,

and 0'(z) are all known, Eq. (2.15) will give a governing equation for f( ,T).

The boundary conditions at z = h are chosen so that the lower layer solution w

and its derivative w' match, to 0(e3), the upper layer solution obtained in

the next section. Because we shall assume for a first-order approximation

that the region above z = h is homogeneous, it is easily deduced from

Eq. (2.12e) that 0"(h) = 0 if ev'o is continuous at z = h, an assumption we

will make henceforth. However, if 0' is not continuous, it can still be

shown that the 0"(h) term can be neglected if N2 (h-) << N2 (O), where N2 (h-) is

the Brunt-Vaisala frequency just below the interface.

2.2.2. Upper-layer equations

Because the upper layer is of infinite thickness, there is no suitable

scaling parameter e with which to stretch the coordinate axis so that spatial

scales in the vertical would be roughly equal to those in the horizontal.

However, because the wave in the upper layer is coupled to the one in the

lower layer, each must propagate in the C direction with the same phase ve-

locity. Therefore we need to adopt the coordinate transformation:
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X = x - c0 t

T e2t (2.16)

z =Z.

Now the vertical velocity in the upper layer needs to be matched to that

w(E,z,T) in the lower layer. But we note that w( ,z,T) asymptotically

approaches e2w, as e + 0 and because the continuity equation in the coordinate

frame X,z,r is

au + i

the horizontal velocity in the region z > h must also asymptotically have an

E2 dependence. These conditions lead us to expand the upper layer variables

in the following form:

n+1u = s u un(X, z,r), (2.17a)

w o n+1w (Xz ,T), (2.17b)
n=l n

SPo() + I n (X,z,T), (2.17c)
n=1

P =P (h) + n+ 1 Rn (X,z,T). (2.17d)
n=1

The density p0 (or 6-1 ) is assumed to be constant throughout the upper layer.
vo
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Introduction of the expressions Eq. (2.17) into the equations of motion

for the coordinate frame Eq. (2.16) and elimination of U1 , P1 , and R1 at the
2

leading order of e (i.e., e ) yields

I I
@XW 1 a 1 0( 2 )  

(2.18a)

Because the next order approximation also leads to (2.18a), then W1 in the up-

per layer satisfies Laplace's equation to 0(d3).

2.2.3. Matching solutions at the interface

Now a solution of Eq. (2.18a) can be obtained given the following bound-

ary conditions:

W1 (X,z,T) +0 as z + (2.18b)

and

E2W1 (X,z,T) = w(t,z,T) at z =h (2.18c)

where w(.,h,f) is the lower layer solution, to 0(k3), that matches the upper-

layer one at z = h and = eX. The solution of this Dirichlet problem is (Ap-

pendix A)

WI(Xzt) =2 (X-X') f(X ,) (z-h) dx'.

1''~~ _i [(xX,)? + (z-h) (2.19)

Now in order to solve for wk needed in Eq. (2.15) we match the derivatives of

w across the interface. The vertical gradient of WI is
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awl 2(X-X' )2 
-3 (z-h )2-- I  I (X-X')f(X',r) {. (XX2 _ .. h2, ,}f (',X }fXT dX' (2.20)

@z LiT .- , [(X-X' ) + (z-h)2 d.

which becomes, at z h,

aWI(X'zT) _ 2 f (X'r dX
3z h -0 (X-X') 3

This can be written in the equivalent, alternate form:

aWI (X,z,T) C _ +- f( Tt) di'.(_, Izf d (2.21() '

By matching the vertical gradients of w across the interface, we obtain, to

0(3),

£ 2 3 ( , z , ) E2 aW 1 (X z , ()h +  h =  h (2.22)
z i h z I h z - - - h *

We need to match terms with the same order of e, but noting that aW1/az is

proportional to e, we obtain the following boundary condiCions:

wl(_ C' ) dz 0 (2.23a)

z Ih h

and

3 w 2 + f(Z ,T) 1 f( C

2 f d = H {f (2.23b)
az h 3-2 32 R 2

where

H[f} - P f , d ' (2.23c)
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is the Hilbert transform of f, and the symbol P denotes the Cauchy Principal

value of the integral taken along the real axis.

2.2.4. The equation of wave evolution

We finally obtain the desired equation governing f(&,T) by using

Eqs. (2.23) and (A.2a') in Eq. (2.15) to get

+ af - a2 Hf= 0 (2.24a)

where the coefficients a,8 are functions of the stratified layer characteris-

tics and are given by
3 h o-i1 3d

2- f0 vo dz -1
a h m (2.24b)

f I '2 dz

0 VO

ico6' o(h)
c = m-(h 2 S(2.24c)

f '1' 2 dz

0 VO

The parameters co and * are given by the solution of the eigenvalue problem

Eq. (2.12e), and the operator H is defined by Eq. (2.23c). Because in atmos-

pheric inversion layers changes in 6vo are small relative to its mean value in

that layer, the coefficients a, 8 are controlled principally by 4. However, €

strongly depends on the vertical profile of evo through Eq. (2.12e).

In principal, Eq. (2.24), often referred to as the BDO equation in recog-

nition of the work of Benjamin (1967), Davis and Acrivos (1967a), and Ono

(1975), can be solved given any long-wave disturbance as an initial condition.

Recently Tung et al. (1981) and Christie and Muirhead (1982) have provided
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numerical solutions for the KdV equation and BDO equations given an initial

wave distribution.

2.3. The Steady-State Solution for Propagating Solitary Waves

One of the most important contributions of Benjamin was to find a simple,

closed-form, solution to Eq. (2.24) for waves of permanent form (i.e.,

= 0). We now consider the steady-state solution of Eq. (2.24) resulting
aT

from the dynamical balance between the competing effects of nonlinearity, the

second term, and dispersion, the third term. If we assume that f( ,) is a

function of = - cl-r alone, Eq. (2.24) reduces to

df +fdf d2

Cld'-+ d - H{f} : 0 (2.25)

where cI is the spepd of the solitary wave in the coordinate system, which

itself moves toward positive x at a speed co relative to the stationary

(earth) coordinate frame x,z,t. Because the axis is stretched by F relative

to the x axis, the speed of the wave in the stationary frame is (c + c

which is easily deduced by the following steps:

: -c 1 T = e(x-co0t - 2 c1t = C[x-(c +eC )t] - (2.26a) _4

where Z is the unstretched x coordinate, which moves at the wave speed

c : Co+CC1  (2.26b)

toward positive x.
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Ono (1975) has shown that Eq. (2.25) is equivalent to the stationary wave

equation derived by Benjamin (1967) and Davis and Acrivos (1967a). A solution

of Eq. (2.25) is

f(0) 2_2' (0 r z < h). (2.27)

For Eq. (2.27) to be a solution of Eq. (2.25), the relations

4c, (2.28a)

and

4 ipc(2.28b)

must be satisifed. That Eq. (2.27) is a solution can be confirmed by substi-

tuting it and Eq. (2.28) into Eq. (2.25) and using the fact that

e22)1 1 C(? 1 22) 1
H[(~ +xs ]

Equation (2.27) is the algebraic solution first discovered by Benjamin

(1967) for internal solitary waves in infinitely deep fluids. The stream

function amplitude at z = h, C = 0 is *0o, and As is the wavelength in the

stretched coordinate C. The width at half amplitude is then 2x and the5

stream function ) in the lower layer is

*ox2
20 2 ,(z). 0 < z ' h. (2.29)

+ s

Because the half-amplitude width 21/2 : 2x in the unstretchel coordinate frame

x,z,t is equal to 2xs /E, and because = hs/x, we find that xs = hs. Because
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hs, a, and a are constants for a specified virtual potential temperature pro-

file, Eq. (2.28) clearly shows that the wave's amplitude and speed, as well as

width xs' are fixed by the evo profile. However, we show in Section 2.3.2

that the wave parameters in the unstretched coordinate frame are not fixed by

the Ovo profile but only require, for wave permanency, that amplitude be an

inverse function of wavelength. From Eqs. (2.26) and (2.28), we note that the

speed of the wave in the fluid is sc faster than the speed co for extremely

long waves of infinitesimal amplitude. Because waves of the longest wave-

lengths are the fastest of vanishingly small amplitude waves, and because the

solitary wave speed is faster than this, the solitary wave is said to propa-

gate at supercritical speeds.

In terms of the unstretched coordinate axis X,

oX2

f(x) T ---- + , 0 4 z . h. (2.30)
x + X-

In this coordinate frame we notice that the wave's nalf-amplitude width X1/2

is no longer fixed at a value equal to 2hs, but is a variable. The steady-

state solution for the vertical velocity is obtained using (A.4) of Appen-

dix A:

W1(xz )  - fof ke- k(zh) ['_I
- 71 f e+h [ - sin k(x'-Z)dx']dk; h z

in which f(x) has been substituted for f(X,*r). The integrations can be exe-

cuted using the integral formulas f-i':d in Gradshteyn and Ryzhik (1965,

pp. 407 and 490) to yield

2 x (z-h+x)
Wl('z) - [ + (zh+ 12 z h. (2.31)
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II

Now the stream function in the upper layer is ju) =_f Wldso

1u- + (z-h+X)2  z > h. (2.32)

That the vertical velocity in the upper layer matches that in the lower layer

at z = h is easily demonstrated by substituting Eq. (2.31) into Eq. (2.17b)

and using Eq. (2.29) in Eqs. (2.11) and (2.8).

By using Eqs. (2.8) and (2.12d), the dependent variables u, w, p, and p

can be expressed, to first order in c, in terms of the stationary frame co-

ordinates x, z, t, and a stream function p = p1 as

u(x,z,t) = uo(z) + -L* (2.33a)
0 az

w(x,z,t) (2.33b)

p(x,z,t) = po(Z) + coP0  (2.33c)

6v(X,z,t) = (vo(z) - dvo (2.33d)
0

where

C - X p(z z < h (2.33e)

is the stream function in the stationary frame (i.e., earth coordinates). The

wave speed c can be expressed in terms of the stratification parameter by

eliminating *o between Eqs. (2.28a) and (2.28b) and noting that hs = Xs su

that when c1 is substituted into Eq. (2.26b) we obtain
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c = co + S/X, (2.33f)

the speed of the wave relative to this frame. The stream function j is de-

fined in Section 2.2.1 in terms of the first-order variables, ul, wl, etc.,

which are related to the first-order components u, w, etc., of Eq. (2.8) by
2

the multiplicative factors e, F , etc. Therefore we had to define the stream

function tu = ei in order to derive correctly scaled u, w, etc., from

Eqs. (2.33a-d). Thus in the unstretched coordinate frame, the stream function

amplitude 'max is equal to Eio . Substituting this and X. = Fx into

Eq. (2.28b) gives the expression

X = 4a (2.33g)
x ma x

which clearly shows, for permanent waves, the inverse relation between wave-

length and amplitude. Thus, shorter wavelength waves can have larger ampli-

tudes, and consequently more intense shear, without the wave's breaking and

dissipating.

In the upper layer z > h the stream function is

= ) - - py(z-h+X) z > h. (2.34)
[(x-ct) 2 + (z-h+X) 2] '

Likewise, in the upper region, the first-order terms u, etc., are the
~2

products of 2 and the first-order variable ul, etc. Therefore, the stream

function _ = -1 gives the correct u, etc., when Eqs. (2.33a-d) are applied.

It is worthwhile to mention that although these first-order solutions have

and a3/ax continuous across the interface, ap/az is discontinuous there and

hence aw/az and u are also discontinuous at z = h.
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Examination of Eqs. (2.33e) and (2.34) shows that, for the dominant mode

in which *(z) is a monotonically increasing function in the interval

o < z 4 h, the stream function is always positive and has a peak amplitude

*o at x = 0, z = h. Although the wave's half-amplitude width is a constant

equal to 2X in the region z 4 h, it is a monotonically increasing function

equal to 2(z-h+x) for z > h where the wave amplitude decreases as z

increases. Furthermore, parcels of air are lifted by the wave as it passes

and are displaced a fixed horizontal distance. This can be deduced from the

finite positive value of the time integral of u. That is, after the wave

passes, the parcels of air do not return to their original positions, but are

permanently displaced to the right for a wave propagating to the right. How-

ever, they do return to their original height.

The horizontal velocity of the wave is maximum at the earth's surface (if

friction is ignored) and consequently this is where the parcel displacement

and shear would be largest. However, frictional effects of the terrain will

diminish the intensity of shear near the ground and lessen parcel displace-

nent. Nevertheless, the wave passage can enhance pre-existing shear which

together may be sufficient to cause dynamic instabilities and the formation of

Kelvin-Holmholtz waves and turbulence, as observations discussed in Sec-

tion 3.2 show.

2.3.1. Streamlines and wave properties--comparison with Benjamin's

solution

Streamlines give a better visual impression of the flow than of the

stream function so we now discuss some of the properties of solitary wave

streamlines. To present streamlines, we use a coordinate frame that

-31-

0



translates at the speed c of the wave so that the stream function in this

frame is independent of time. In this case the stream functions are

WIZ) * x 2 - cz, z < h (2.35a)
(Z) 2+ X

and

Fo X(z-h+ X)
(,2 -2 cz, z > h. (2.35b)[(x)2 + (z-h+}.)2]

where x x-ct. As x"+ -, the stream functions have the asymptotic value -cz.

Thus, we are led to assume some value for z, say n, which a streamline asymp-

totically approaches, and then solve (Zz) = 1(-,z) = -cn for z to determine

streamline height, given x. Therefore a streamline is the solution of

2

c-(z-n) ( ) }22 = O, o < z < h (2.36a)
2x + X2

and

F-*o X(z-h+ X )
c(z-n) - - +(z-h+ 2 - h < z. (2.36b)

()+ (z-h+x)

The displacement 6 (z-n) of a streamline from its asymptotic height n is

6 = (,z) + z' (2.37)
c

which gives displacements as a function of Z, z. From the above equations, it

is apparent that the maximum displacement of a streamline occurs at 0 = ,

where
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6(O,z) , c ' o < z < h (2.38a)

E X5(O,z) = c(z-h+X) h < z. (2.38b)

For the dominant mode, (z) increases to its value of unity at z = h. Thus

the peak displacement 6m , or amplitude of the wave, is

6m- c (2.39a)

which occurs along the streamline remaining entirely in the lower layer but

which is tangent to the level z = h. That is, the peak displacement is at the

interface. Equation (2.38b) shows that the rate of decrease of 6(O,z) vs. z

(for z ; h) has an inverse dependence on X; the longer is X, the slower is the

decrease of 6(O,z) with height.

To compare our results with those of Benjamin (1967), whose solutions are

in terms of streamline displacement, it is most direct to solve Eq. (2.37).

But Eq. (2.37) does not give the shift as a function Zalong a single

streamline having the asymptotic height n. In order to obtain that result, we

need to substitute z = n + 6 into Eq. (2.37) and then solve for S. The func-

tional form of the solutions in the upper layer are independent of the lower

layer stratification and hence it would be convenient to compare solutions

there. Therefore we need to solve

c6- ()2 = 0 (2.39b)( + (6+s)

for 6, where s n - h + X defines a streamline. However, the solution of

this equation is not easy, so we expand (2.39b) to second order in 6, since it

is small compared with s, and solve for 6 to obtain
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X 6m 2 (2.39c)

an approximate solution that neglects a %X term because it is small compared

with s2 X2 . Benjamin's solution (1967, Eq. 3.83) is

S as. 2 (2.39d)
2 + s 2

where a is the peak displacement of the streamline having the asymptote

n = h. But at n = h, X = s and a comparison of Eqs. (2.39c and d) shows that

a 6m. Although the difference between Eqs. (2.39c) and (2.39d) is slight

for streamlines having asymptotes n = h, the solutions differ markedly

when n - h > X. Benjamin's solution shows that the peak displacement of the

fluid in the upper region is independent of height, whereas Eq. (2.39c) shows

that peak displacement decreases with height. More specifically, since Ben-

jamin's solution does not satisfy his stipulated boundary condition (i.e., 6-o

as z+-) we must assume his solution is in error.

2.3.2. Properties of the dominant mode solitary wave

Because the change in 6vo across any inhomogeneous atmospheric layer is

usually small compared with the layer mean -vo Eqs. (2.24b-c) can be approxi-

mated by

3 (')3 dz

S (2.40a)a: h 2

and 2 f (') dz
0

h 2 " (2.40b)

2 f (@') dz
0
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By substituting eA = s and Eq. (2.39a) for *o into Eq. (2.28b), and using

Eq. (2.33f) to eliminate c, we obtain

4s 
(2.40c)

an equation that specifies the relation between wave displacement amplitude

6 and wavelength X in order for the wave to have permanent form.

We shall be principally concerned with the dominant mode eigenfunction

*(z) since that is most frequently observed. In this case (z) monotonically

increases in the interval 0 4 z 4 h so we can estimate a and s by assuming

that 4 is approximated by the lowest order power series

2 - (z)2 (2.41a)

which satisfies the boundary conditions, 4 : 0 at z = 0, 4'(h) : 0 at z = h.

Substituting 4' into Eq. (2.40) and integrating, we find that

-9 (2.41b)

and

3c 0 h
0 8 (2.41c)

By substituting these values into Eq. (2.40c), we find that

2h (2.42a)

3F -x(1+3hfS.XT

The first-order terms of the expansions in Eq. (2.8) give satisfying approxi-

mate solutions only if e z h/x is much less than unity. Thus,
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2 h
2 h k (2.42b)

h

must have the same order of magnitude as h/x . In other words, not only must

the displacement amplitude of a wave of permanent form have an inverse

relation to X, but also the wave must be weakly nonlinear in order for the

solution given by Eq. (2.27) to be valid. However, this does not imply that

steady-state solitary waves having displacements comparable with h cannot ex-

ist. Tung et al. (1982) showed that large-amplitude internal waves can have a

permanent form different than that given by Eq. (2.27) and yet satisfy

Eq. (2.25). Thus the condition given by Eq. (2.42b), for a solitary wave to

be permanent, is valid only for weakly nonlinear waves and solutions of the

form given by Eq. (2.27).

In the more general case of a stratified layer thickness h, much larger

than the scale h. of stratification, aLand .will not be a function of h but

will depend on hs . In this case, again for p(z) monotonic in the stratified

layer, '(z) is roughly h 1 and so from Eqs. (2.40a) and (2.40b)
a

a 3/2h s  (2.42c)

Os
c 0- Chsl/2 (2.42d)

and, when these values are substituted into Eq. (2.40c), the condition on 6

becomes

2 4 h -1
"m/hs ~-(I + Tx) order of unity, (2.42e)
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since hs/ << 1. Thus in the general case, the solution given by Eq. (2.27)
5

is valid only if wave amplitude 6m is weak (i.e., %/x << 1). Thus the theory

based on this solution is said to be weakly nonlinear.

Equation (2.42e) applies to the case of internal waves in infinitely deep

fluids having a vertical scale hs of stratification, and is a result first un-

covered by Benjamin (1967) who contrasted it with the relation

2
msh-I -order of unity, (2.43)

0

appropriate for solitary waves on shallow fluids, where 6ms is the displace-

ment amplitude of the surface wave and ho is the depth of the fluid. Thus in

the case in which the depth of the shallow fluid is equal to the scale of

stratification in the infinitely deep fluid, the latter's solitary waves have

much larger amplitude if h / = hs/X << 1.

At this juncture, we consider a simple but practical example, so that we

can better understand the properties of the steady-state solitary wave. Let

us assume that the Brunt-V'isal" frequency is a constant in the region z < h

and zero above (i.e., avo = constant for z > h). Solution of Eq. (2.12) gives

*(z) = sin[(N 2 z]. (2.44)
0

We use the bar above N2 to signify a lower-layer average of N2 , anticipating

that we will accept the eigenfunction (z) as the first approximation to the

solution for the case in which N2 is a function of z. Substituting this func-

tion into Eq. (2.40) gives

2 4hco
(2.45a)

IT

where
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= N 2)1/2 (2.45b)

is the eigenvalue that satisfies the boundary condition '(h) = 1 and is the

linear wave velocity (i.e., the speed of a wave of infinitesimally small am-

plitude). Thus the wave speed is linearly dependent on the Brunt-Vaisala

frequency of the layer. It is of interest to point out that the wave velocity

(computed from Eq. 2.45b) for infinitely deep media, but in which the layer of

stratification is small compared with X, is twice that given by Tung et al.

(1981) for shallow media (total depth h small compared with X) having the same

uniform stratification and boundary conditions except that w = 0 at z = h for

the shallow fluid whereas w = 0 at z = for the deep fluid. Thus the near-

ness of the upper boundary layer can exert an enormous influence on the wave

speed (and probably the waveform) and thus its location may be of crucial im-

portance in numerical models in which the upper boundary is usually placed,

for practical reasons, at a finite distance above the layer of stratifica-

tion. Although we have indicated that wave speed in an infinitely deep medium

is twice that for a shallow one, Maslowe and Redekopp (1980) have solved a

similar pair of problems for sheared flow, and their solution suggests that

wave speeds are identical. They specifically note "that the eigenvalue rela-

tion is the same for both depth limits is unexpected." This difference ap-

pears to be due to the fact that they have matched pressure across the inter-

face z = h, and this condition results in '(h) * 0, whereas in the BDO solu-

tions '(h) = 0. Apparently Maslowe and Redekopp use the condition of pres-

sure continuity because they have assumed sheared flow. However, their re-

sults suggest that wave speeds for shearless flow are the same for infinitely

deep and shallow media (see their Fig. 8). Further investigation is required

to determine the root of this apparent discrepancy.
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For a vertical profile of ev, linear over h,

N2 = . (2.46a)
'voh

For this case we can estimate co using the relation

Co = g Aevoh 112

T (_ (2.46b)
°vo

where T-o is the layer mean. Substituting 0 from Eq. (2.45a) into

Eq. (2.40c), we find that

m 8 4i h 1 (h 14
h (T T-T-. =order of unity, (2.47)

a result similar to the one (i.e., Eq. 2.42b) roughly estimated.

We can express wave speed in terms of 6m by applying Eqs. (2.28a),

(2.45a), and (2.39a) to Eq. (2.23f) to obtain

c - 06 co (1 + ). (2.48)

This agrees with the wavespeed Benjamin (1967) computed for waves propagating

in a layer having an exponential decrease of po, if the argument of the expo-

nential function is small so that hs = h. Equation (2.48) shows that the

phase speed increment, added to the phase speed co for extremely long waves of

infinitesimal amplitude, is proportional to wave amplitude. This property of

nonlinear waves is important to our interpretation of radar data presented in

Section 3.0.
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3.0. THEORETICAL SOLUTIONS COMPARED WITH OBSERVATIONS

Doviak and Ge (1984) presented evidence that a thin line of reflectivity,

commonly associated with gust fronts, was in fact a solitary wave generated by

the interaction of thunderstorm outflows. However, they did not make quanti-

tative comparisons of data with theory. Although they emphasized analysis of

data collected using a tall (444-m) tower, the Doppler velocity field was

shown to be consistent with winds measured by anemometers on the tower. In

this section we examine in greater detail the Doppler radar's data fields to

determine the wave characteristics that are accessible because of the time and

space continuous observations made with Doppler radar. Furthermore the radar

data fields of reflectivity and velocity are used to determine the relation

between wave amplitude and speed of propagation for comparisons with the

weakly nonlinear theory (Section 3.5) as well as (Section 3.6) the theoretical

results given by Tung et al. (1982) for strongly nonlinear waves.

We also use the Doppler data fields to examine the vertical profiles of

reflectivity and wind of the ambient air in which the solitary wave propa-

gates. We show that refractive index irregularities can account for measured

reflectivity in the upper layers but the unusually large reflectivity in the

lower layers is probably caused by the presence of insects.

3.1. The Ambient Environment

The virtual potential temperature profile in advance of the wave is cal-

culated from dry-bulb and dew-point temperature data from rawinsondes for

altitudes above 444 m by interpolating data at the 1800 CST 5/11/80 and

0600 CST 5/12/80 sounding times to the 2300 CST time of wave passage at the

tower. The virtual potential temperatures computed from tower data show the

presence of an intense surface-based inversion layer having a thickness of at
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least several hundred meters. The solid line in this figure is the subjec-

tively fitted function,

evo = 308.4 - 14e-z/350, 0 4 z 4 1,140 m (3.1a)

qvo = 306.3 + 1.5 x 10-3 z, 1,140 m 4 z. (3.1b)

Although (Ovo)' is continuous across the interface, z = h, the assumption made

in setting the *"(h) term to zero in Eq. (2.15), is open to question because

we have a non-zero value for ev'o(z) for z > h. However, it can be shown that

the "(h) term in Eq. (2.15) is small compared with the preceding term in that

equation. The dashed curve is a hyperbolic tangent function fitted to the

data and is discussed in Section 3.6.

Figures 2a and 2b show the vertical profiles of the northwest (ua) and

southwest (va) averaged wind components, before wave arrival, which are re-

spectively perpendicular to and along the wave front at the time (2305 to

2315) the wave passed the tower. The estimates from anemometers on the tower

(36 km from the radar at azimuth 3560) are 10-min averages of the data spaced

10 s apart about 2245, the time radar data were also used to compute u and

v. The ambient winds measured with radar are obtained from estimated Doppler

velocities for an assumed horizontally uniform wind model, least-squares-

fitted to the Doppler velocities measured over an azimuthal sector from 3300

to 30° at ranges near 30 or 40 km where data were free from ground clutter,

and range-aliased overlying echoes (Doviak and Zrnic', 1984). However, the

upper four data points are taken from Doviak and Ge (1984, Fig. 5). In that

study the wind at each height was assumed to be uniform over an approximately

500 azimuthal sector, roughly centered to the north. Approximately five Dop-

pler velocity data at each azimuth in a 1 km range interval were averaged to
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Figure 2a. The ambient wind component Ua,Uo in the direction of wave propa-

gation. The A are data, from tower anemometers, averaged over the

indicated 10-minute period. The ua curve is fitted to these data,

whereas the uo curve is obtained from fitting data averaged 
over a

2 min period just preceding wave arrival at the tower. Open

circles are wind components derived from single Doppler 
data

fields and + are winds interpolated from earlier and later 
rawin-

sonde data.

2b. The averaged ambient wind component va,vo in the direction or-

thogonal to ua.
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reduce the Doppler estimate variance, and pairs of averaged Doppler velocity

data with about a 250 azimuthal spacing were used to estimate the wind. Sev-

eral pairs of data were sought that were within the 1-km rarqp iint-val at

each elevation angle (to have estimates at nearly constant height) and the

distribution of winds from these pairs were plotted.

It should be noted that the wind profiles shown on Fig. 2 differ from

those given by Doviak and Ge. When comparing the Doppler data with the Dop-

pler velocity predicted from the wind estimates given by Doviak and Ge, we

find a poor fit for data at the 0.840 km altitude. This one poorly-estimated

datum altered the wind profile significantly. Perhaps winds were not uniform

as assumed, or the data selected were not representative samples. On the

other hand, the least-squares-fitting method uses all data, and its wind esti-

mates fit the radar data much better at this altitude, and it also gives es-

timates that have good agreement with tower data. We could not least-squares-

fit the data at heights above 1.15 km because echoes were not detected at the

30 to 40 km ranges. But by decreasing the range and increasing elevation an-

gles, we were able to detect echoes from the clear air. Unfortunately, most

all of these data were contaminated by ground clutter, and we could not confi-

dently apply the least-squares-fitting algorithm because it weighted exces-

sively data that appeared in clusters with small azimuthal separation (from

closely spaced data poor estimates of wind are retrieved; Doviak & Zrnic',

1984, Chapter 9). However, because Doviak and Ge subjectly selected Doppler

velocity pairs that had large angular separation, and ones that appeared to be

uncontaminated by ground clutter, they seem to have made valid wind estimates

for all other heights. The fact that three wind estimates, at around the 2-km

height, agree so well, even though they were obtained from data pairs at three

different beam elevation angles (i.e., 2.90, 3.70, and 4.50) supports the

-43-



validity of these wind estimates, as does the smooth wind profile connecting

their datum at 1.36 km altitude with the least-squares-fitted datum at

1.15 km.

The horizontal bars, for the least-squares-fitted data, indicate the 95%

confidence limits, assuming errors are Gaussian distributed and using the com-

puted rms values of the data about the model velocity. The vertical bars de-

note the uncertainty in beam height for a 0.10 uncertainty in elevation angle,

and also the variation in beam height because radar data from a 4-km range in-

terval were used in the fitting. The solid lines in Fig. 2 are the inferred

profiles of the ambient wind.

The winds measured by rawinsonde are values interpolated from sounding

data at 1800 on May 11 and 0600 on May 12. The interpolated temperature pro-

file (Fig. 3) is assumed to reasonably estimate the ambient temperature above

the stable layer because there was less than a 20C change over the 12-h inter-

val between soundings and because the interpolated profile fits well the mea-

sured values at low altitudes. However, the wind field changed considerably

during this interval, and the interpolated wind differs significantly from the

radar-derived wind. Nevertheless, there is good agreement between tower- and

radar-measured winds that are from data close to the same time. So we shall

accept these estimates to be representative of the ambient wind field. Even

though radar-derived wind data extend unly to 2 km, it is the wind below 1 km

that is important in altering the wave characteristics.

The difference in wind measured by the radar ane tower at the common

height of 400 m was most likely due to the combined effects of reflectivity

gradients, beamwidth, and beam blockage. Beam blockage causes Doppler veloci-

ties to be biased toward those in the upper part of the beam. Because the

profiles were derived from data in the azimuthal sector to the north, where
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Figure 3. Virtual potential temperature versus height above ground level

(AGL) circa 2255 CST on May 11, 1980.

radial winds were increasing rapidly with height, beam blockage could account

for the larger velocity measured by radar at the 400 m altitude.

Another cause for differences is that the wind might not be uniform as

assumed in the model used to fit the Doppler data. For example, Fig. 2 shows
S

the ambient wind profile vo averaged for the 2-min period just preceding the

solitary wave at the tower. Although the u component changed little from the

values deduced 15 minutes earlier, the v component underwent significant

change in the first few hundred meters of the atmosphere. We assume that
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this 1 0 profile, to be used in Section 3.3, represents the values that the

ambient wind would have had if the wave were not present.

Although the ambient wind could have changed during the 10-min period of

wave passage, it is difficult to determine precisely the change, if any, that

would have occurred. Examination of the wind and temperature after wave pass-

age shows that, at altitudes below 100 m, there were quasi-permanent changes

caused by the wave and its associated phenomena. At higher altitudes turbu-

lent mixing, apparently induced by the wave, appears to have altered the mean

flow. Therefore we could not deduce v0 within this 10-min period by interpo-

lating between data at the beginning and end of the wave, so we have instead

assumed that the ambient wind in absence of the wave would roughly correspond

to an assumed constant vo equal to that 2-min average immediately before wave

arrival.

The u profile can be approximated by the function

10 - 3.13z - 5.03 x 10 (z+0.4 )5"51.e 5 76(z+0" 4) m s- 1

0.2 4 z < 2.2 km. (3.2)

This function could be used to derive an estimate of the bulk Richardson num-

ber needed to determine the properties of the solitary wave. Because of the

two-dimensionality of the wave, we should not expect shear of the v component

to significantly modify the dynamical structure of the wave. Although the

Richardson number of pertinence to the generation of Kelvin-Helmholtz waves,

and possibly turbulence, requires the use of vector wind shear, we assume it

is the Richardson number associated with u shear that is of crucial importance

in determining wave properties.
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Calculation of u" and comparison with terms in the brackets of

Eq. (2.12c) suggests that the ambient wind gradients cannot be ignored.

Nevertheless, we solve the problem assuming u" 0 and accept the solution as
0

a first approximation for eigenfunction I. However, the approximate solutions

might not be so terribly far from the correct ones because numerical solutions

(Tung et al., 1981) show that, in the case of the lowest mode number wave

(i.e., one for which there is no reversal in the vertical displacement of

streamlines, and the one most likely observed here) for which the initial con-

dition in the evolution equation is a solitary wave in a shearless environ-

ment, the wave in the presence of shear has the same shape as in the shearless

case, but faster speed. These results apply to the situation in absence of

critical levels where the background speed uo equals the wave speed. In our

problem the wave speed is larger than 10 m s-1, so critical levels should be

absent. However, we show in Section 3.3 that vertical shear of u causes sig-

nificant change in the magnitude of the observed wind perturbations. We ac-

count for the effects that u" might have on (z) in a later report.

3.2. The Wave's Equivalent Potential Temperature

Contours of equivalent potential temperature (Fig. 4) show a pool of po-

tentially cooler air (shaded area) within the wave, but somewhat lagging to-

ward its rear. If the wave is steady, and the ambient atmosphere vertically

stratified, air parcels travel along surfaces of constant e9 and thus Fig. 4

suggests that trapped thunderstorm outflow might have been recirculating

within the wave, whereas the environmental air passed through the wave (or the

wave passed through the environment) as it was lifted by it. Additional evi-

dence of recirculating flow is presented in Section 3.3.5. Perhaps the trap-

ped air was a cut-off vortex that initially formed at the leading edge of the

-47-



400 342
i,. : N 342

30-__. / Aiiiiiii~iiii~iiii
[ iiiiiiiii i............. .

E 334 338
z / iii32"4' 1......

0200.

3301

100 Y
A326 / e =326

2318 2316 2314 2312 2310 2308 2306 2304 2302 2300

TIME (CST)

Figure 4. Equivalent potential temperature (K) in the NW-SE cross section

through the wave. The shaded area denotes the approximate loca-

tion of trapped thunderstorm outflow; tp is the time (roughly the

same at all tower levels) at which the wave produces a peak in the

u wind component (See Fig. 6a).

horizontally spreading gravity current (i.e., the thunderstorm outflow) as it

penetrated the stable layer. Although the formation of the vortex and its

eventual separation from the gravity current is not fully understood, it seems

reasonable to suppose that once the wave is formed with recirculating outflow

inside it, the vortex is trapped by the wave and continues to propagate at the

wavespeed, leaving behind the ever-slowing gravity current. The position of

the pool of cool air at the trailing edge of the wave (Fig. 4) is evidence

that the heavier outflow lagged the wave, giving credence to the idea that the

wave dragged the trapped air, or at least the two had some symbiotic relation.

If the trapped air in the wave were formed solely of ambient air, it should be
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centered within the wave as the numerical results of Tung et al. (1982) indi-

cate.

3.3. Wind Perturbations Observed With Tower Instruments

In Fig. 5a we present the position of the leading edge of the Doppler ve-

locity perturbations (i.e., the wave front) caused by the wave as a function

of time. This figure shows that the wave front passes NSSL's tall (444-m)

meteorologically instrumented tower at about 2305. The storm that supposedly

created this wave was about 100 km north of the radar at 2300 CST and was

tracking to the east-northeast. Thus the wave front positions displayed in

Fig. 5a are well to the south of the storm, and because there are no other

storms south of this one, the wave propagated through an environment undis-

turbed by other storms. Although the front had curvature (see Section 3.4.1

for discussion of wave curvature) and changed orientation as the wave propa-

gated in a generally southeast direction, it nevertheless had an azimuthal

orientation of about 450 at the time it passed the tower. Therefore a time

series of data spaced 10 seconds apart is plotted (Fig. 6) to show the tempo-

ral dependence of wind components u and v (orthogonal to and along the front)

at five levels (7, 90, 176, 266, and 444 m). If we ignore the contribution of

storm outflow (i.e., the shaded areas in Fig. 6b), these data exhibit, only at

lower altitudes (i.e., z < 176 m), a definite wave-like velocity perturbation

that is nearly wholly in the NW-SE cross section. However, at the highest

anemometer levels (i.e., 266 and 444 m) pronounced wave-like perturbations

appear in both the u and v components.

These observations complicate our comparison with theory, which assumes

that velocity perturbations are in the plane orthogonal to straight wave
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Figure 5a. Isochrones of the leading edge of Doppler velocity perturbations

produced by a solitary wave. The location of the 444-n tower is

indicated by the A, and the dashed line is the path of wave front

normals that pass through the tower location. The shaded sectors

highlight the zones from which Doppler data were extracted to de-

termine wave characteristics.

5b. The wind observed at surface sites A to G before (solid arrows)

and after (dashed arrows) wave passage. The 2 m s-1 vector scales

the wind. The magnitude I+ I and direction 0 are for the wave's
p

peak disturbance of the wind, AT is the step-like temperature

change (C) observed, and I is the time lag from wave front

passage to the occurrence of the steepest temperature decrease.
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5c. The dry bulb temperature TDB and wind components east (u') and

north (v') recorded tatonawion A during the time period 2230 to

2325 CST. The lines through the data points are subjectively

smoothed estimates of the andand wind and are shown to
aid interpretation.

fronts. Furthermore, we need to decide whether to define the wave character-

istics at all times along directions perpendicular to the wave front, or in

the NW-SE cross section in which wave energy propagates (see Section 3.3.1) orJ

in the direction of the perturbation wind at the 444-m level, well above the

recirculating outflow. Wave characteristics (speed, wavelength, etc.) are

crucially dependent upon this choice and hence affect our comparison with

theory.
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Figure 6a. The observed (dots) u component of wind vs. time at five tower
levels. See text for an explanation of the various curves.

6b. Same as 6a, but for the v wind component. The shaded areas are

the winds attributed to thunderstorm outflow.

3.3.1. The direction of wave travel and speed

it is natural to define wave characteristics along lines orthogonal to

the wavefront, but if the wave contains flow circulating in planes, then it
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also seems reasonable to expect these circulations to remain in those planes,

as the wave propagates, because angular inertia would resist turning. There

would have to be an external force acting on the circulations to turn the axis

of rotation. But there is no force other than gravity acting on the wave and

this will not cause the axis to turn. Supporting this contention are meteoro-

logical data at the surface sites (Fig. 5b) which show that wave circulations

remain in a plane whose direction is within a few degrees of the 318' mean

value over the entire sampled length of the wave even though wave front direc-

tion changed considerably. If wave energy traveled in the plane of circula-

tion, then rays of energy paths would be straight, although the speed of

energy propagation would depend on the local characteristics (i.e., wave am-

plitude, inversion thickness, etc.) along the ray. It is not readily apparent

from Fig. 6 that the wave circulations are entirely in a plane at all heights,

but an analysis of Section 3.3.2 of wind perturbations shows that wave circu-

lations are wholly within the northwest-southeast plane and hence the ray di-

rection is southeastward.

The position of the wavefront along the curved line (i.e., the curve of

dashes in Fig. 5a), orthogonal to the observed wave front at various times, is

plotted in Fig. 7 from which we deduce a wave speed that decreases with time.

To determine wave speed as a function of time along the ray path (Fig. 5a), we

have also plotted in Fig. 7 the wavefront position along the southeast direc-

tion. Both curves show that the wave speed decreases as the wave propagates,

but the rates of decrease are less at later times where it appears that speed

might be approaching a steady-state value of about 12 m s- 1. However, the

time of arrival of a wavelike velocity disturbance at surface sites to the

south of the last radar observation indicate that wave speed may have de-

creased to values of about 10 m s-1 or less. We attribute this rather sudden
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Figure 7. Position of the leading edge of the wave perturbation along the

path of wave front normals (solid line) and along a ray path

(dashed line). Zero distance is referenced to front position at

221130.

decrease to a thinner inversion layer as the wave approached the leading edge

of the gravity current, generated by an earlier storm, which formed the inver-

sion layer (see Fig. 13 of Doviak and Ge, 1984).

The solitary wave speed given by theory is the group velocity of a wave

packet along a ray because the solitary wave comprises a group of spectral

components that form the packet. It is also the speed of wave energy. There-

fore we assume that the wave front speed, measured along the ray, equals the

wave speed given by theory.
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3.3.2. The components of wind change and the plane of circulation

A close examination of the data suggests that the wind field can be ana-

lyzed in terms of six components,

v = v0 + Av +v 2  Vto + VKH + vt (3.3)

++
where vo is the background flow assumed horizontal in absence of the wave, AVo

is the change caused by the wave when it vertically transports different

amounts of V0 momentum because of V0 shear, v+2 is the flow that the wave would

produce if wind were uniform but t can include, for large waves, recirculat-
2

ing flow as demonstrated by Tung et al. (1982), Vto is the axial (i.e., paral-

lel to the wave crest) component of the trapped thunderstorm outflow, VKH is

the velocity of well-defined, short, wave-like perturbations assumed to be

Kelvin-Helmholtz waves, and Vt is the contribution due to turbulence and other

ill-defined small scale-wind perturbations. The flow v+2 is assumed to be in

vertical planes and its wind perturbations to be those given by the theory for

two-dimensional waves propagating in horizontally uniform media.

For argument's sake we have separated the solitary wave's wind into the

2-part v+2 = i+u + kw, applicable both within and outside regions of trapped

flow, and a component Vto assumed to be associated only with the trapped out-

flow. The orientation of our coordinate frame is selected so that the wave

component v+2 lies wholly in the x,z plane oriented NW-SE. Because the wave

generated perturbations in three directions, parcels of air do not follow

paths that lie wholly in any vertical plane. Nevertheless, V2 deduced from

estimates of analyzed wind components is equal to 2 given by theory which

assumes flow soley in the plane perpendicular to the front.
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Although the wave component v2 was in the NW-SE cross section at the time

the wave passes the tower, we assume that wave perturbations v+2 remained in

that cross section irrespective of the wave location. Thus wave circulations

would have been for the most part, oblique to the front because parts of the

front advanced more rapidly than others in response to wave amplitude, inver-

sion thickness, etc. As can be deduced from Eq. (2.48), solitary waves have

speeds that increase with amplitude. Although this relation has been derived

for waves of permanent form, we nevertheless assume for the case here, in

which the wave is not exactly steady, that wave amplitude controlled wave

speed in the same way. Wave amplitude was highest near the storm (see Sec-

tion 3.4.4), and because of losses, amplitude decreased as the wave progressed

with a speed determined by wave amplitude as well as inversion layer charac-

teristics.

The above discussion leads us to deduce that wave energy propagated in

the southeast direction irrespective of the wavefront orientation, and it is

along this direction that wave characteristics (speed, wavelength, etc.) will

be determined. The assertion that rays (i.c., energy paths) are not orthogo-

nal to the wavefront might be surprising because the intuitive feeling is that

wavefronts and rays are perpendicular to each other. But this is not neces-

sarily so (e.g., see Whitham, 1974, Ch. 14, Sec. 7.9).

The interpretation that the wave component 1 2 remains in the NW-SE plane

also helps to explain why the Doppler radar measured strong radial velocity

perturbations (> 20 m/s) when the beam was pointed parallel to the wavefront

near the thunderstorm. Although axial flow velocity vto was also likely to be

stronger there, we show in the following paragraphs that vto is appreciably

less than v2 at the heights above ground where the beam intersected the wave.
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So it seems likely that it was the v2 component that was observed at large

distances.

3.3.3. Wave guidance of thunderstorm outflow--the leaky pipe

The shaded areas in Fig. 6b are those perturbations that are assumed to

be associated with trapped thunderstorm outflow. The arrows there indicate

the arrival times of trapped outflow estimated from Fig. 4. It is seen that

the onset of wind perturbations (the shaded areas in Fig. 6b) associated with

trapped outflow agrees reasonably well with the location of the trapped air

inferred from the 0e = 325 K contour (Fig. 4) at all tower levels. However,

trapped outflow barely reached the 444 m level. The oblong, closed contour of

Bet trailing to the rear of the wave (Fig. 4) is evidence that the pool of

cool air leaked out the rear of the wave in accordance with laboratory obser-

vations of fluid flow (Maxworthy, 1980). The component vto, lingering after

wave passage, gives further evidence that outflow leaked out the rear of the

wave at altitudes below 90 m.

Additional evidence of leaked outflow is seen in the data of wind and

temperature at surface sites (2 m above ground level, AGL) displayed on

Fig. 5b. The recorded wind and temperature data are 1-min averages of samples

spaced 10 s apart, and Fig. 5c shows a sample data set from station A. The

solid arrows on Fig. 5b indicate the 10-min average surface wind immediately

before wave arrival, and the dashed ones are winds after wave passage. Where

arrows are not displayed the wind speed was less than 0.5 m s - 1. Also por-

trayed on this figure are the changes in dry-bulb temperature (0C) and the

lags, in minutes, between the time of wavefront arrival (the beginning of

velocity change), and the beginning of the step-like temperature change (see

station C for the key to interpret this figure). The peak magnitude IV+pI of

p
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the wave (i.e., of the 1-min averages) during wave passage is also portrayed

on Fig. 5b and c along with the direction Dp from which the wind blew.

In all cases temperature drops did not recover within 30 or more minutes

after the passage of the wave, thus indicating that trapped thunderstorm out-

flow was left behind. Remarkably there was no discernible step change in ten-

perature at sites E and F, suggesting that all the trapped outflow had leaked

from the wave before it reached those two sites. Furthermore there was little

or no net wind change at these sites. Besides losing trapped outflow before

reaching sites E and F, the wave had less amplitude compared with what it had

at the sites farthest north. We thus conclude that the large-amplitude wave

contained recirculating thunderstorm outflow, which continuously leaked out

its rear, causing a concomitant decrease of wave amplitude. It is uncertain

how much of this decrease in wave energy is associated with leakage and how

much might be lost through waves propagating in the slightly stable region

above the surface-based inversion layer.

Although we have deduced that the cool air behind the wave originates in

the wave, one might question whether this cool air is a gravity current, and

the wave, at its leading edge, its head of remarkably large amplitude. The

ratio of gravity current head heights to the depth of the current behind the

head, recently measured with radar for 25 cases (Mahoney, 1987), shows an av-

erage value of 1.14 and a maximum observed ratio of 1.35. Droegemeier and

Whilhelmson (1987), working with numerical models of gravity currents, showed

ratios as large as about 2. If the wave reported herein is the head of an ad-

vancing gravity current, its height is about 400 m and the depth of the cur-

rent behind it is less than 100 m; it has a ratio larger than 4, an unusual

value.
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Although this observation cannot preclude cool air as a gravity current,

more damaging evidence against this hypothesis is the disparity between the

observed speed of the wavefront (or gravity current?) and that theoretically

deduced. Noting that the depth of the gravity current hgis less than 100 m,

and that the difference A8 in virtual potential temperature evg of the

current and the ambient air [i.e., A6 v = og - evo(o)]] is, at most, 0.80C,

the gravity current speed cg = Vghao (O) is approximately less than

2 m s-11 This is markedly less than the observed speeds that are faster than

12 m s- .

Doviak and Ge (1984) assumed that a gravity current, impinging onto the

inversion layer formed by the outflow of an earlier thunderstorm, generated

the solitary wave, and this wave, propagating at speeds faster than the cur-

rent, left it behind. Although we have examined data at the surface sites

shown on Fig. 5 for times up to 4 hours after wave passage, we found no evi-

dence of a current following the wave. Perhaps the current never reached

these sites. It would have been fortunate to have surface sites farther

north, but the sites displayed on Fig. 5 were the only ones operating in 1980.

Thus, although data suggest that cool air behind the wave is leaked outflow,

we have no evidence of a gravity current's initiating the wave that then pro-

pagates ahead of it.

Upon examining data from stations G and H we were unable to discern a

solitary wave or any step decrease in temperature. On the contrary, at sta-

tion G, temperature and wind increased (from 22.20 to 24.2% and from 0 to

about 3.5 m s- 1 from the south) in a step-like way at 2330. No changes in

wind or temperature were observed at H. If the wave propagated at the

10 m s"I speed it roughly was observed to have had when propagating to site f,

it would have arrived at site G at about 2238, or 8 minutes after the
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beginning of the observed step-like temperature increase. Because wave speed

is observed to decrease consistently as the wave proceeds, it is likely that

the wave speed is less than 10 m s-1 , but certainly no more.

Doviak and Ge (1984) suggested that the wave never arrived at sites G and

H because the wave outran the gravity current (generated by an earlier thun-

derstorm) that formed the inversion layer within which the solitary wave pro-

pagated. So the step increase was not associated with the wave. We attribute

the increase in temperature and wind to an erosion of the pool of cool air

that had been deposited, at 2142, by the outflow of the earlier thunderstorm.

The outflow gravity current decreased the temperature, at this time, by about

3.0°C. The ambient flow south of this gravity current is southerly. We de-

duce that southerly ambient air, above the pool of cool air, mixed downward,

erasing the inversion layer in 1 hour and 50 minutes, so that the solitary

wave did not have a layer in which to propagate to site G.

On the other hand, Shreffler and Binkowski (1981) attributed similar step

increases in temperature, observed far from thunderstorm outflows, to internal

bores propagating on nocturnal inversions. However, because we did not ob-

serve any associated step increase in pressure to be expected to accompany

bores initiated by thunderstorm outflows (on the contrary, the pressure de-

creased by a few tenths of a millibar shortly before the temperature rise), we

affirm that the observed temperature increase is caused by downward mixing

through a shallow inversion layer below a low-altitude wind jet (Fig. 2) and,

furthermore, that this also is the likely mechanism to explain the temperature

increase observed by Shreffler and Binkowski.

There is evidence that thunderstorm downdraft flowed along the axis of

the solitary wave, thus replenishing some of that leaked behind the wave.

However, it should be noted that the trapped outflow had sufficient volume to

-60-



easily cover, without replenishment, the ground with cool air between the

storm and the wavefront when it reached the tower, about 60 km southeast of

the storm. To demonstrate, consider the trapped outflow to occupy a cross

section of the wave 0.5 km deep by 4 km wide, nearly that observed at 2310 in

Fig. 5. If this entire air mass is deposited along the 60 km distance from

the storm to the tower, it would cover the ground with cool air to a depth of

about 30 m. However, examination of tower data at two other altitudes (26 and

43 m) suggests that the leaked outflow had a depth between 45 and 90 in. Con-

sidering that the trapped outflow probably occupied a much larger volume

earlier, and that leaked outflow could be replenished, a deduced leaked out-

flow depth between 45 and 90 in is not unrealistic, and thus the observed cool

air behind the wave could easily have been supplied by trapped outflow leaking

from behind the wave.

The presence of this pool of cool air left behind the wave can complicate

relating wind and temperature, measured with instruments 2 m AGL, to large-

amplitude solitary waves having recirculation because the temperature drop and

wind shifts might be construed to be evidence of an advancing gravity current

on top and in advance of which wave-like perturbations can evolve (Crook and

Miller, 1985). Only through observations with the tall tower do we gather

evidence that the pool of cool air was a quite shallow (i.e., < 100 m) trapped

thunderstorm outflow which leaked out the rear of the wave.

We have shown that the wave trapped cool air having an axial component of

momentum directed away from the storm. The axial momentum of the trapped air

is generated by the thunderstorm outflow, which recirculates within the wave

while being transported by it through the surrounding environment. However,

the recirculating v2 and axial vto momentum must be attenuated by drag forces

of the ground and surrounding air as the outflow is directed away from the
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storm by the "guidance tube" formed by the wave. Furthermore, because the

trapped air was denser than its surrounding environment, it was continually

.leaking out of the "guidance tube" leaving behind a shallow pool of cooler

air. It is remarkable that the storm outflow had remained in the wave for

distances at least 60 km from the storm. Although storm outflows propagate as

gravity currents to large distances from the storm, it is suggested that grav-

ity waves and in particular solitary ones, formed by the interaction of the

storm's downdraft with the stable layer, can transport the outflow faster and

probably, with greater momentum, farther. Thus hazardous shear, normally con-

fined to regions close to the storms might indeed be found at large distances

from the storms.

3.3.4. Wind perturbations produced by the vertical transport of

horizontal momentum

The AuoI,AV0 components in Fig. 6 are estimated by assuming that parcels

of air, traveling along lines of constant oe , do not change their momentum.

Contours of ae should give an accurate depiction of parcel trajectories if the

flow is steady and if the atmosphere is horizontally homogeneous. For ex-

ample, Fig. 4 suggests that air from a height of about 100 m above ground was

lifted by the wave to the 444 m altitude of the topmost anemometer. The pair

of negative peaks seen in the vo + Av0 trace (Fig. 6b, top) was most likely

generated as air, having the peak negative vo from the 180 m level (see

Fig. 2b), passed twice through the anemometer at the 444-m level. Moreover,

th. shape and amplitude of the waveform vo + at the 444-m level, where the

only contributions to changes in v - vt are from the vertical transport of mo-

mentum, agree remarkably well with the observed shape and amplitude. The good

agreement of the observed data v and the wind change deduced from Figs. 2 and
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4 suggest that turbulence is weak (i.e., rms values are less than about

0.5 m s- 1 ) and that vKH = 0 at the 444-m level. However, at the 90-m level,

Kelvin-Helmholtz waves might be the cause of the wave-like perturbation in v.

To compare observations with theory, we assume that u - ut - uKH (dashed-

dotted lines in Fig. 6a) is equal to the sum of Auo due to wave-induced verti-

cal transport of uo momentum, the ambient flow uo , and the wave component u2

obtained from theory for shearless profiles. The dashed-dotted curves are

subjectively estimated to filter turbulence and the apparent wave disturbances

that appear to develop in the solitary wave.

Near the ground there is no lifting of air so that ajo = 0 and hence the

wave component u2 is well estimated from the dashed-dotted curve. Moreover,

vertical velocity data show insignificant lifting below 90 m as does Fig. 4

and furthermore, because the vertical shear of uo was nearly zero below 100 m

(Fig. 2a), u2 is also given by the dashed-dotted curve at the 90-n tower

level. However, at the 266-m level, uo was about -4 m s - 1 , and air of zero

momentum was lifted from near the 100-m level, so we can expect that Au had a
0

peak of about 4 m s-1 . The dashed lines on Fig. 6a are the estimates of

uo + AUo obtained from Figs. 2a and 4. At the 444-m level, uo was much more

negative (i.e., -7 m s-1 ) and because air from near the 100-m level was also

brought to this topmost tower level, the peak change in Au0 should be about

7 -17ms -I

3.3.5. Wave characteristics from tower data

The difference between the trace of uo + uo and the dashed-dotted one in

Fig. 6a gives the estimate of u2 , the wave component to be compared with

theory. The amplitude of u2 and the wave's half-amplitude width X1/2 are

plotted on Fig. 8. The half-amplitude width is determined using the 12 m s- I
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Figure 8. Amplitude of u2 and half-amplitude width 1/2 vs. height. Circled

x is P1/2 estimated from radar data (Table 3.2). The dashed lines

are extrapolations based upon the eigenfunctions of weakly

nonlinear theory and ignoring friction at the surface.

speed estimated (Fig. 7) for the wave when it passed the tower. Above 100 m

altitude the wave amplitude decreased monotonically as expected from theory.

The relatively small value of the observed wave amplitude (7 m s-1) at 7 m al-

titude is attributed to the effects of drag caused by the terrain and/or mix-

ing of a r by convective instabilities that develop when cool air is atop warm

ground. Without effects of drag it is expected that wave amplitude at the

surface .ould have been 13.0 m s-1 (see dashed curve on Fig. 8). The pro-

jected 13.0 m s-1 amplitude of the horizontal velocity perturbation u2 at the

surface is a little faster, at this time, than the wave propagation speed c =

12.0 m s-1. This gives additional evidence that trapped air is recirculating

when it passes the tower.
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The dashed line for u2 above 444 m is an extension based upon the eigen-

function solution of weakly nonlinear theory discussed in more detail in Sec-

tion 3.5. Although the data above 150 m extend over too short a height inter-

val to give confidence that they confirm the eigenfunction form, the data are

at least consistent with this shape. However, weakly nonlinear theory shows

that half-amplitude width should be constant within hs, and above the layer of

stratification it should slowly increase with height (see Eqs. 2.33e and

2.34). Although the decrease in '1/2 at the tower levels near the surface

could be explained in terms of denser air leaking out the rear of the wave as

seen in Fig. 4, there is an inexplicable decrease of h/2 for heights well

above the surface. Perhaps the u0 + &1 traces in Fig. 6a are not accurately

representing the changes in u due to vertical transport of horizontal momen-

tum. A more rounded shape of the Au waveform at z = 444 m would result in an

L1/2 larger than 3.2 km. Because Au0 is estimated assuming parcel trajec-

tories follow 6)e contours (Fig. 4) it is possible that humidity might have

significant horizontal gradients, which would cause erroneous estimates of

trajectories. On the other hand, the presence of trapped air could cause the

wave to be broader, and thus the decrease of X1/2 with height would be due to

the lessening amount of outflow air. On the contrary, numerical solucions for

solitary waves in a three-layer-deep fluid show, for strongly nonlinear waves,

that wave width increases with height (e.g., Davis and Acrivos, 1967a,

Fig. 2). This dichotomy might be explained by the fact that the observed

trapped air is denser than the surrounding air and hence more of it will

settle to the surface; whereas, in the numerical model recirculating fluid has

the same density.

At the 7-m level, short wave-like features appear to grow in the solitary

wave. These short waves decreased in amplitude with height so that they were
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barely discernible at the 90-m level. Data at the 26-m and 43-m tower levels

(not shown here) also exhibited waves that had temporal coherency with that

observed at the 7-m height. These short waves appear to be Kelvin-Helmholtz

(K-H) waves that grew on the leading edge of the solitary wave. Prior to the

wave passage, the vertical shear was zero in the lowest 100 m of the atmos-

phere, but the wave generated a strong shear in the first few tens of meters

above the ground where de vo/dz was nearly zero (Fig. 2), and hence the

Richardson number is then nearly zero. These K-H waves grew and then decayed

as the solitary-wave created shear vanished.

On the other hand, there might be an alternate explanation for these

short-wavelength waves atop the longer solitary wave. Keulegan and Carpenter

(1961) observed that internal waves generated vortices in the stratified layer

separating two homogeneous fluids of different densities. But these vortices

appeared only when the thickness of the stratified layer became larger than

some critical value, an observation that is in direct opposition to what would

be expected if the vortices were due to K-H instabilities. Davis and Acrivos

(1967b) examined this problem both experimentally and theoretically and showed

that resonantly interacting disturbances can induce an instability and, when

viscous dissipation is accounted for, their analysis gives the minimum ampli-

tude at which a wave is unstable. Although we shall label the observed short-

wavelength disturbances as K-H waves, further investigation is required to de-

termine whether the observed waves are induced K-H waves or those produced by

resonant wave interactions.

3.4. Wave Characteristics Observed Using Doppler Radar

Although the tower data give high-resolution in situ velocity measure- 0

rnents, the Doppler radar has the advantage of measuring the radial component
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of velocity over a large area. Thus, only with radar could we have deduced

that wave fronts are curved as shown in Fig. 5. Furthermore, the radar data

give a direct measure of wave speed. On the other hand, because we did not

observe the wave with NSSL's two separated Doppler radars, we need to estimate

wave perturbations u2 from single radar data. This determination is further

complicated by the large beamwidth (0.80) and the uncertainty in beam height

due to the presence of the strong inversion layer and reflectivity gradi-

ents. Notwithstanding these difficulties, much information about the wave can

be derived from radar observations.

3.4.1. Wave front curvature and wave speed

As pointed out in Section 3.3, data suggest that thunderstorms, which

passed earlier in the evening, deposited a pool of cool air to establish an

inversion layer on which a solitary wave was initiated by a later storm. This

wave then propagated to the southern edge of the pool (estimated to be about

20 km south of the tower) where it finally dissipated. The orientation of the

pool's southern boundary is neither easily nor confidently determined using

data from the sparse number of surface stations, but it appears to be aligned

along a southwest to northeast line. Although the pool of cool air was gener-

ated by thunderstorms, it appeared to form a relatively homogeneous inversion

layer, at least away from the immediate boundaries. The contention that the

inversion layer was relatively uniform is supported by the surface data, mea-

ger as it was, and radar observations that the wave front is straight when it

is far from the storm (see Fig. 9). A straight wave front results when the

wave propagates at a constant velocity along the front, a condition expected

when the environment is uniform and the wave amplitude is constant or, small.

Supporting evidence comes from the field of Doppler velocities observed in the
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Figure 9. Plan Position Indicator (PPI) display of echo power contours

(boundaries of shaded areas) in about 10-dB steps, showing the
solitary wave joined to the storm that created it. Maximum re-
flectivity factor in the storm is about 55 dBZ. Elevation angle

is 0.40. Vs is the storm velocity vector.

northwest quadrant at low elevation angles before wave arrival that, comple-

mented with data from the few surface stations, show a large shallow pool of

air moving to the south.

Although we didn't have a sufficient number of surface stations or

in situ data to determine the homogeneity of the atmosphere in which the wave
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propagated, it is to be noted that the temperatures, before wave arrival at

stations A, B, C, were within 0.3' of 17.7°C, whereas temperatures at sta-

tions D, E, F, were 2 to 30 higher. However, these higher temperatures to the

south are attributed to the stations being close to the southern boundary of

the pool of cool air. It is about there where the wave finally met its de-

mise. Thus to the north where radar and tower observations of the wave were

made, surface station data support the premise that the inversion layer was

homogeneous.

It can be shown that if a disturbance is generated by a source moving at

uniform velocity Is in a homogeneous environment, the disturbance's wavefront

should be straight, analogous to a shock front formed by a projectile trans-

versing a homogeneous medium at speeds faster than the wave speed. Because

the wave source was within the storm its velocity can be estimated by plotting

the location of the storm's peak reflectivity during the 1-h period of obser-

vation. These locations fell nearly in a straight line and the positions ver-

sus time of the projections of these locations onto the line are plotted on

Fig. 10. We thus deduce a uniform source velocity of 24 m s-1 along a track

directed 730 from north.

However, surprisingly, the wava fronts are not straight but show a defi-

nite curvature near the storm. Furthermore, Fig. 5 shows that the wave front

is shifting from a north-south orientation when close to the storm, to a

northeast-southwest alignment when the wave propagates away from its source.

Nevertheless, the front becomes straighter the farther the wave is from the

storm (Fig. 9).

The fact that the wavefront remained behind a line drawn orthogonal to

the track at the source location is evidence that the source (i.e., the storm)

propagated at speeds faster than the wave. In other words, the source of the
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Figure 10. The storm's peak reflectivity position vs. time along the storm's

track along the ground.

solitary wave moved at speeds corresponding to an effective Mach number larger

than unity. If the wave speed c were constant, the wavefront would have

formed a straight line emanating from the source at an angle y to the track.

Then we could have used the Mach relation

c = Vssiny (3.4)

to derive an estimate of wave speed. However, this relation is based on the

assumption that wave velocity is perpendicular to the straight wavefronts,

whereas the front observed here is curved and changes orientation as it propa-

gates southeastward. Nevertheless, where the wavefront is straight, it can be
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shown that Eq. (3.4), applied to these wavefront portions (Fig. 9), gives the

steady final speed of the wave. We attribute the curved wavefront to a de-

creasing speed of propagation as the wave progresses from its source. How-

ever, this decrease is not caused by spatial changes in the ambient environ-

ment, but by the dependence of wave speed on its amplitude. Further compli-

cating the use of Eq. (3.4) is the fact that the atmosphere is moving gener-

ally in a northerly direction (Fig. 2) and thus the source velocity that is

required in Eq. (3.4) is the one relative to the moving frame, whereas Fig. 10

gives the velocity in the stationary earth frame. Thus the source velocity

will have a more southerly direction and a slower speed. However, because the

inversion layer and wave energy is confined to the first few hundred meters of

the atmosphere, where the ambient flow is slow, we expect that our estimate of ]
is not ruined.

Because the wave was trapped in an inversion layer, wave propagation is

one-dimensional, contrary to the two-dimensional (2-D) flow of a shock wave in

a totally uniform fluid. Thus, there was no amplitude decrease due to wave

spreading as we would have in an expanding cylindrical shock wave. The decay

in amplitude for the trapped wave was a result of energy being lost because

some of the components that constitute the solitary wave propagate away

through the slightly stable layer above h = 1.14 km (Chen, 1985) and/or energy

can be lost through leakage of recirculating thunderstorm air trapped in the

wave, analogous to leakage observed in laboratory experiments (Maxworthy,

1980).

If c decreased with distance from the source because wave amplitude de-

creased, then it can be shown that the wavefront should have had a convex

shape as observed in Figs. 5 and 9. Although wave amplitude was highest near

the source and decreased as the wave progressed southeastward, it should be
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noted that this may not always be the case. Christie and Muirhead (1982)

solved the equation of evolution (Eq. 2.24a) and showed that solitary waves of

increasing amplitude can evolve out of longer wave, smaller amplitude, dis-

turbances.

Although wave amplitude decreased in the case discussed herein, causing

wave speed to decrease which in turn caused wavefront curvature, energy is hy-

pothesized to propagate along rays as deduced in Sections 3.3.1 and 3.3.2. It

can then be shown (Appendix C) that the Mach relation takes the modified form

Vs sin y
Cm - sin(y+p) (3.5)

where p is the angle between the ray direction (1350) and the direction s of

source propagation, and y is the angle between the source path and the line

tangent to the wavefront at the location where wave speed is estimated.

Thus, p = 135 - s = 620. At the time the front passed the tower, y = 280.

Substituting these values and our estimate for Vs into Eq. (3.5), we obtain

Cm = 12.4 m s
-1 in reasonably good agreement with the speed ct = 12.0 m s

-1

deduced from tracking wavefront position versus time alony the ray (Fig. 5).

Although the agreement is not as good at earlier times (see Table 3.1), both

estimates show that c decreases with time. Furthermore, this decrease slows

with time so that c seems to approach an asymptote of about 12 m s- I or, at

least, to decrease at a much slower rate after 2311. It is unfortunate that

data collection stopped at this time. Estimates of wave speed by these two

independent methods both show that wave speed decreased by a factor of 2 over

the period of observation.

Except for the earliest and latest time, the wave speed c estimated using

E4. (3.5) is somewhat higher than the speed c determined by tracking frontal
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position along the ray. This difference could be attributed in part, to the

northerly flow of the ambient air which causes the storm track to advect so

that s is larger and Vs is smaller. The wave speed c tabulated in Table 3.1

is measured relative to the ground. but it is c', the wave speed in the coor-

dinate frame advecting with the medium, that needs to be compared with the

theoretical estimates presented in Section 2.3. We now consider the effects

of advection.
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Table 3.1. Comparison of wave speed cm from the modified Mach relation
Eq. (3.5) and wave speed, ct, computed from tracking frontal posi-
tion along a ray passing through the tower.

TIME 1F* Y cm(m s-1 ) ct(m s-1 )

221130 130 600 24.5 --

221420 180 550 22.1 26.0

2220 210 520 20.7 20.5

222630 270 460 18.2 17.2

223310 290 440 17.3 15.9

224015 330 400 15.8 14.1

224530 340 390 15.4 13.3

2250 360 370 14.6 12.6

2300 400 330 13.1 12.0

230530 420 310 12.4 12.0

2311 450 280 11.3 12.0

* F Azimuth angle of the front at the intersection with the ray (Fig. 4).

Note: Wave front passed the tower at 2305.

The velocity at which the wave advects is difficult to estimate because

the wind is nonuniform in height, and does vary somewhat along the horizontal

and/or time as indicated, for example, by the difference in the ambient wind

(Fig. 2). However, because most of the wave's energy is confined to the

lowest 400 to 500 n of the atmosphere, we assume that it is within this layer

that an u~iweighted average of the ambient wind determines the advection veloc-

ity. From Fig. 2 we estimate the advection velocity

o= u> + jv0>, (3.6a)
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to be approximately

o>  -2.5 1 m s " 1  (3.6b)

<Vo0> = 2.0 1 m s - .  (3.6c)

The angle brackets (< >) denote a vertical average, and the error limits arise

from the uncertainty in the vertical profile of the wind and the height inter-

val over which the average needs to be made. A more complete theory, which

accounts fully for the effects of wind shear, needs to be made in order to

precisely estimate the advection velocity and the effects that shear has on

wave characteristics.
+

The storm velocity vector Vs in the frame advecting with velocity 10 is

Vs= Vs  <V+ > (3.7)
5 5 0'

+

and it is IVs' and s that need to be used in Eq. (3.5) for moving media. The
+

estimates of Vs give

IVsl = 23.6 ± 1.5 m s- (3.8a)

' 80.7 ± 3.5 (3.8b)

Using these values in the Mach relation we compute cm , the wave speed in the

moving coordinate frame. The c' values are plotted onto Fig. 11 along withm

error bars that denote the variance in our estimate of c' caused by them

*1 M s-1 uncertainty in advection velocity. We also estimate c; , the wave
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Figure 11. Wave speed versus time. cm is wave speed computed using the Mach

relation, and ct is the wave speed computed from tracking wave
fronts. The solid line is the estimated actual wave speed.

speed computed from tracking wave fronts in the moving frame. The <vo> compo-

nent does not affect ct because vo is normal to the direction of propaga-

tion. Thus

ci = ct - <uo> ± I m s - 1. (3.9)

These c values are also plotted onto Fig. 11 to compare with cm, We note

that the two independent estimates of wave speed agree better than those in

Table 3.1, but more importantly, it shows that the wave speed to be compared

with theory is faster than the speed observed relative to the ground and

listed in Table 3.1. The c value at the earliest time might be an
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overestimate because then the wave is at long range from the radar, and hence

the beam intersects the wave at higher altitudes. Since the wave has a gentle

sloping front, the range of the leading edge of the wave will appear to be at

longer ranges than the leading edge near the ground. Thus c would appear to

be larger than it actually is. The solid line in Fig. 11 is the subjectively

estimated actual wave speed when the earliest c datum is ignored.

It would also be helpful to have a rigorous theoretical treatment to de-

termine whether ray paths for nonlinear waves created by a moving source are

indeed straight when the medium is homogeneous, to determine the curvature of

the front, and to determine the relation between wave front speed, wave char-

acteristics, and the ambient air characteristics.

3.4.2. Doppler velocity perturbations

At 2245 the radar beam intersects the wave to the northwest at ranges of

about 50 km. This is about the latest time for which we have digitally re-

corded Doppler data to derive quantitative estimates of velocity profiles

along the beam. Data at this time have the best spatial resolution (700 m)

because the wave is nearest the radar.

In Fig. 12 we present the radial component vr of the wind deduced from

Doppler velocity measurements through the wave at 2245. Each curve is Doppler

velocity data averaged over a 40 azimuthal sector (see Fig. 5) for a beam ele-

vation angle of 0.40. Each sector contains radial velocity data along four or

five beam positions, and the data are spaced 180 m apart along the beam. A

wave profile along each radial is then subjectively fitted to the data, and

the four or five fitted profiles are then averaged to form a velocity profile

for each sector centered at azimuth 4c" The vertical bars on Fig. 12 indicate

the Standard Deviation, S.D., (plus, minus) of the fitted profiles. The S.D.
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Figure 12. Average radial velocity in each azimuth sector of about 5 ° width

centered on @cvs. radial distance from the wave's reflectivity

peak. Vertical bars are the estimated standard deviation of the

n data. yr0 and Vrp are the radial components respectively of the

ambient wind in advance of the wave and at the wave peak.

is obtained by computing, at ranges spaced 900 m apart, the S.D. of the fitted

profile at each range, and then averaging the S.D. for all ranges in the wave.

The averaged profiles are then plotted on Fig. 12 along a distance scale that

is relative to the location of peak of the wave's reflectivity used to obtain

a reference distance.

3.4.2.1. Wave reflectivity

It is observed that the peak in horizontal velocity perturbations lags

behind the peak of reflectivity by about 1 or 2 kilometers, an unexpected re-

sult. Because the reflectivity factor Z (Doviak and Zrnic', 1984) of the am-

bient environment has a strong vertical gradient (-17 dBZ/km), hut is
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otherwise horizontally homogeneous, we should expect peak reflectivity to

occur at the location of the wave crest. The observed difference is at-

tributed to the response of insects and/or night-flying birds or mammals

(which are assumed to be the targets) to the wave. As they are lifted by the

wave they become cooler, and we assume they would fly downward to try to main-

tain their temperature. Since the vertical velocity, estimated with the ane-

mometer at the 444-m tower level and averaged over the time that targets are

being lifted, is about 1.5 m s- 1 and less at lower heights, the insects/birds

should easily manage to descend fast enough to alter the reflectivity profile

during the wave passage, and thus cause peak reflectivity to precede peak wave

di spl acement.

The hypothesis that insects or birds are the targets is supported by the

large scatter of the mean Doppler velocity estimates from one resolution

volume V6 * to the next V6 (Doviak and Zrnic', 1984) and the unusually high

equivalent reflectivity factor (10 dBZe at 300 m altitude) in the otherwise

clear air. Clear air reflectivity estimated from in situ refractivity data

obtained with an airborne refractometer, and that remotely measured with a

ground-based radar observing the clear marine air boundary layer during day-

time periods of strong mixing gave Ze values about -5 dBZe (Doviak and Berger,

1980) which are practically the largest ones that might be expected from re-

fractivity index irregularities (see Doviak and Zrnic', 1984, Fig. 11.17).

Now considering the large scatter of velocity estimates, we have found that

standard deviation of the spatial fluctuations, from V6 to V6 , of the mean

Doppler velocity in each V6 is larger than 2 m s- 1, whereas estimated standard

*The subscript 6 refers to the -6 dB surface circumscribing the volume of

space within which the target cross sections are weighted by factors larger
than 1/4.
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deviation, based on observed signal-to-noise ratios (SNR in dB = 15 dB) and

spectral widths ( = 6 m s-I), should be less than 1 m s-1 (Doviak and

Zrnic', 1984, Chapter 6). Thus evidence suggests that insects or other fast,

but randomly moving targets responsive to the wave are responsible for the un-

usually large reflectivity and large standard error of mean Doppler velocity

estimates, and that they descend in response to being lifted by the wave.

Furthermore, the reflectivity was 10 dB lower after the wave had passed than

before the wave's arrival, further suggesting that targets have descended in

response to the action of the wave.

3.4.2.2. Effective beam height

In order to relate tower and radar measurements we need an estimate of

beam height at the range r to the wave peak at 2245. But this determination

is complicated by the intense vertical gradients of reflectivity and refrac-

tive index. The temperature and moisture profiles in the inversion layer are

such that below 500 m the gradient of refractive index is nearly zero, and in

a layer between 500 m and 700 m it is -2.3 x 10-4 km-1. Applying the equa-

tions developed in Chapter 2 of Doviak and Zrnic's text (1984) we determined

that rays at elevation angles less than 0.30 will be totally reflected, but

straight, below 500 m. Thus a significant fraction of the beam energy, in the

0.80 width of the beam, directed at elevation angles of 0.40, could be trapped

in the inversion layer. Thus not only is the gravity wave energy trapped by

the inversion, but so is the energy of the electromagnetic wave. However, be-

cause the lower portions of the beam are blocked by nearby obstacles (e.g.,

buildings, trees) for rays below 0.20, the amount of microwave energy likely

to be trapped is expected to be small compared with the energy that will re-

main in the beam above the inversion. Furthermore the resolution volumes V6
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at short ranges (<50 km) and at low elevation angles (0.40) remain nostly be-

low the reflecting layer, so its effect should be negligible at these short

ranges. However, electromagnetic wave trapping might account for the unusu-

ally long range (= 120 km, see Fig. 1 of Rust and Doviak, 1982) to which the

solitary wave is observed. That is, if electromagnetic waves propagated along

straight lines, V6 would probably be well above the solitary wave at 120 km

ranges.

If refractive index gradients are ignored, computation of the straight

ray path, launched at an elevation angle of 0.4', places the beam center

height in the solitary wave at about 550 m above ground at the range of 50 km.

However, reflectivity data acquired at shorter ranges with higher resolution

show that reflectivity decreases exponentially with height and that there is

at least a 15-dB change across the 3-dB beamwidth at the 50-km range. This

suggests that the targets that contribute to the mean Doppler velocity in each

of the resolution volumes, having a range extent of 150 m and spaced 180 m

apart, are principally from regions below 550 m. On the other hand, because

the lower portion of the beam is blocked, the effective beam height, for homo-

geneous reflectivity fields, would be shifted to altitudes higher than 550 m.

It is rather difficult, using electromagnetic theory, to obtain a precise es-

timate of the effective beam height at the wave location, so we have resorted

to another approach.

Effective beam height he is obtained by relating our best estimate of the

radial component of wind (i.e., from Fig. 2, using tower data at low altitudes

and radar data at higher altitudes where the wind should be negligibly dele-

terious to the radar beam) to the measured radial component Vro (Fig. 12) in

the ambient air, at the approximate range r = rp - 6 km, just in advance of

the wave where rp is the range to the wave peak. Figure 13 shows the
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Figure 13. Hodograph of the ambient wind o()obtained from tower and radar

data. The dots on the three azimuths @¢ give the measured radial

component vro of the ambient wind preceding the wave. The angle

p is between the radar beam direction minus 1800 and the south-

east direction; vrp is the measured peak radial velocity pertur-

bation.

hodograph of the wind obtained from Fig. 2, and the three radial components

Vro (at three azimuths) from which we deduce he at rp. The perpendicular

-82-



projection of Vro, at each Oc' onto the hodograph gives the estimate of he.

These parameters are listed in Table 3.2. The height hc, listed for refer-

ence, is the beam center height at rp if gradients of reflectivity and refrac-

tive index and blockage were ignored. Thus some lowering of beam height is

caused by the observed gradients.

Table 3.2. Wave characteristics along the front.

yc Vro rp hc he uo(he) Vrp u2(O,he) OF XI/ 2  te

(Deg) (m s-1) (km) (m) (m) (m s-1) (m s-1) (m s-i) (Deg) (km) (CST)

331.2 7.1 46.8 500 430 6.1 - 7.0 7.3 41 3.2 225630

339.8 8.0 50.3 550 440 6.3 - 8.0 8.8 38 3.1 225030

347.0 9.8 56.2 640 500 7.0 -10.0 11.8 32 3.2 224330

TOWER --- --- --- 444 --- --- 6.4 -- 3.2 2311

he = effective height of beam at range rp

hc = beam center height at rp, assuming straight line
propagation paths

rp = range to wave peak

Vro = Doppler velocity of the ambient wind

Oc = azimuth of the Doppler data sector

Vrp = radial velocity at the wave peak

u2(0,he) = amplitude of the wave's horizontal velocity

te = equivalent time along wave front (see Sec. 3.4.4)

uo  = ambient wind at height he

OF = azimuth of a line tangent to the front (Fig. 5a)

'1/2 = wave width at half amplitude
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3.4.3. Estimates of wave amplitude and half width

Because momentum of the ambient environment is nearly zero below 200-m

altitudes, and because it is lifted by the wave to the 400- to 500-m altitudes

of the beam, u0-AU0 = v0 -Av° = 0 at the wave peak. Trapped outflow reaches

the beam but its velocity Vto is likely to be less than a few meters per sec-

ond at the heights where it intersects the beam (see Fig. 6b). Furthermore,

because the beam direction is northwesterly, the weight that vto gives to the

Doppler velocity vr is less than that received from u2 . Thus we shall ignore

its contribution to vr so that the observed peak Doppler velocity vrp (see

Figs. 12, 13) equals approximately the projection of the amplitude of the

horizontal velocity u2(0,he) onto the beam direction. This estimate of

u2(O,he) along each of the azimuth sectors is tabulated in Table 3.2.

The half-amplitude width "112 (Fig. 1) is much more difficult to estimate

because the waveform vr(r,z) is a complicated function of the streamline's

vertical displacement 6(r,rn), the ambient wind profile uo(z), vo(z), and the

waveform u2 (r,z). If the wave is weakly nonlinear, u2 should have the Z de-

pendence given by Eq. (2.30). However, the waveforms of u2 (x,z) observed

(Fig. 6a) at the tower do not fit precisely the form given by Eq. (2.30) but

instead exhibit, especially at lower altitudes, crests that are more rounded

and sides that are steeper. These differences are probably a result of the

trapped outflow and large amplitude of the observed wave. Indeed Tung et al.

(1982) showed numerically simulated solitary waves of permanent form having

shapes similar to the shape observed on Fig. 6. However, these simulated

waves were generated in a somewhat shallow fluid of total depth 4 times the

stratification scale hs and it is suspected that the boundary might also mod-

ify the waveshape from that expected when the boundary is infinitely far away.
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Rather than trying to deduce an analytic formula for vr(r,z) from which

we can estimate '1/2' we can use observations to deduce the approximate wave-

form of vr(r,z). Since the inferred uo + P o waveform at the tower follows

somewhat closely the leading and trailing edges of the observed waveform and

then abruptly becomes constant at a value of zero during most of the wave per-

iod when u2 has appreciable value, we assume during the radar observations

that the u waveform has similar characteristics. Certainly evidence shows

that the wave has larger amplitude earlier, and hence zero momentum air from

low altitudes would be brought to even higher heights than 444 m. So we

should expect that uo + AUo = 0 for much of the wave period during the radar

observations. Thus, 112 can be estimated from Fig. 12, assuming that the 2-D

wave is, for the most part, depicted by the negative portion of vr(r). Thus

from the geometrical arrangement of the sectors centered at azimuth c' and

the orientation of Lhe wavefronts (Fig. 5a), we determine that

si n(-)£/2 = r sin(135-4c) 
(3.10)

where Zr is the half-amplitude width, deduced from Fig. 12, along the azi-

muth c' and CF is the azimuth of the solitary wave front at its intersection

with the radar beam. Values of £1/2 and F are tabulated in Table 3.2 showing

that the wave width is relatively constant along the front whereas wave ampli-

tude shows significant decrease away from the source. Comparing these values

for £1/2 with the values obtained at the tower (Fig. 8) we see that they

agree with the half width measured at the 444 m tower level. The anomalously

larger values of X 12 for heights below 444 m are assumed to be caused by the

trapped outflow which, because of its higher density, might cause the wave to

be broader at the lower altitudes. Thus, we assume that /112 = 3.2 km roughly
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represents the half-amplitude width of the wave. However, because tower data

do not show I/2 to be constant with height as theory indicates, we don't have

complete confidence that this estimate is appropriate for substitution into

formulas of nonlinear wave theory to derive other wave properties (e.g., wave

speed) to compare with observations.

3.4.4. Time dependence of wave amplitude--comparison of radar and

tower data

Wave amplitude is not nearly so constant as wave width so to compare

tower and radar observations further we assume that points along the wavefront

farther from the storm correspond to older portions of the wave. Thus we can

compare wave amplitude observed at the tower with those amplitudes observed by

radar at 2245. An equivalent time scale along the wavefront can be deduced by

noting that the wave source propagates, in the moving ambient air, at a uni-

form speed IVi of about 23.6 m s-1 in the direction = 80.70, and by assum-

ing that elements of the wavefront travel along straight rays in a southeast

direction (1350) as inferred in Section 3.3.2. Then it can be shown, by con-

structing a tangent line to the wavefront, that

dte = d sin (135- 4F)
e = sin(135-p' ) (3.11)

where dt is the element of distance along the front, measured relative to the

point where the ray intersects the front at 224530, and dte is the equivalent

increment in time. Then dte is relative to 224530, which is the time the

radar observes the peak of the wave front element that passes through the

tower about 25 minutes later. Since F is nearly a constant equal to about

340 at the intersection of the front with the radials at 4c' we deduce the
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equivalent times te listed in Table 3.2. The amplitude u2 (0,444)of the wave

at 2211 is 6.4 m s- 1 and this is also listed in Table 3.2 because the 444-m

tower level is nearest he for all three radials. To better compare wave am-

plitudes we have plotted u2(0,he) on Fig. 14 to show that the wave amplitude

decreases with time, losing about half its value (or 75% of its energy) in

less than 30 minutes. Although we don't have radar data for the time when the

wave passes the tower, this figure and Table 3.2 show that the radar and tower

observations of u2 and £1/2 suggest that wave amplitude is nearly constant

after 2300, consistent with the observation that c is nearly constant after

this time.

15
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Figure 14. The solitary wave's horizontal velocity amplitude, u2(o,he), at

about 450 m AGL versus time.
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3.5. Comparison with Weakly Nonlinear Theory

Because wave amplitude and speed change with time, we obviously don't

have a wave of permanent form, and thus comparisons with theory for steady

waves are open to criticism. Nevertheless, we will compare observed wave

characteristics with those deduced from the weakly nonlinear theory, presented

in Section 2.3, to determine whether the observed wave characteristics might

adjust, as energy is lost, in such a way as to be in accord with this theory

for steady waves. For example, theory shows that waves of permanent form have

speeds that increase with amplitude. Thus the decrease of speed and amplitude

with time observed here (i.e., Figs. 7 and 14) is consistent with this theo-

retical expectation. Although evidence of trapped outflow suggests that the

wave might be strongly nonlinear, it is instructive to compare observations

with weakly nonlinear theory. We compare results with numerical solutions for

strongly nonlinear waves in Section 3.6.

3.5.1. Comparison of wave speed and amplitude

Using Eq. (3.1a) we find that the Brunt-Vaisala frequency squared is

N2(z) = N 2(o)exp(-bz) 0 4 z 4 1.14 km (3.12)

where N2 (o) = 1.32 x 10-3 s-2 (i.e., the oscillation period is about 28 sec-

onds) and b = 2.86 km"1 . Thus the eigenvalue equation (i.e., Eq. (2.12e)),

becomes

+ N2 (o) e-bz  =. (3.13)
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If Eq. (2.44) is taken as the first-order approximation to the exact solution,

we need the average of N2 (z) over the depth h of the inversion. This average

is

N hebZ dz = 3.75 x 10 s-2 (3.14)
0

Using Eq. (2.45b), the linear wave speed co (i.e., the speed for waves of in-

finitesimally small amplitude) is computed, to first order, to be

co=c 01= 14.1 m s 1. (3.15a)

This is a rather crude estimate because N2 (z) does change considerably in the

interval 0 to h. Hence in Appendix B we have employed an iterative technique

to derive analytical equations for the eigenfunction from which we derived

the estimates

co = co2 = 9.6 m s-1  (B.7b)

= 2 2.4 x 10-3 m"I  (B.12a)

2 = 3.5 x 10 3 m2 s - 1  (B.12b)

in which the subscript "2" denotes the second-order approximations. We have

also presented, in Appendix B, a numerical solution of Eq. (3.13) and this

compares well with the iterative one. For example, the numerically estimated

linear wave speed is
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Co = 9.9 M s- 1 (B. 10)

in close agreement with the second-order estimate.

The wave speed c is computed by substituting values of co and a from

Eqs. (B.10) and (B.12b) into Eq. (2.33f), using the experimentally derived es-

timate of 1.6 x 13In for X =0.5 £1/2 in this latter equation. Thus the

theoretically estimated wave speed is

c = 12.1 m s (3.15b)

in surprisingly good agreement with the observed speed of 12 m 51 relative to

the ground. This close agreement is fortuitous because the ambient air moves

relative to the ground and because, as we will shortly show, the wave is not

weakly nonlinear.

Nevertheless, using Eqs. (2.33a,e,f, and g) we can show that

co =c =c + a u2 (oz) (3.15c)

which is the wave speed in still media. So given radar or tower anemometer

measurements of u2 (o,z) versus time, as for example those shown in Fig. 14, we

can estimate c' vs. time. Substituting Eqs. (B.12a and b) for a anu a, and

using p'(z) given by Eq. (B.11), we plotted the theoretically estimated c'

versus time onto Fig. 11 (i.e., dashed line). We see that wave speed given by

weakly nonlinear theory is slightly less than that observed, and both data and

theory show similar decreases as time increases. Moreover, theoretical esti-

mates are within the uncertainty of measurement.

We next turn our attention to comparison of the horizontal velocity

u2 (x,z) computed from theory, and that observed by Doppler radar at 224530,
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and tower instruments 25 minutes later. The maximum value, or wave amplitude,

u2 (o,z), is obtained from Eqs. (2.33a and e) which give, at Z=O,

u2 (o,z) = eop'(z) (3.16)

for heights z below 1.14 km.

*o is obtained by solving Eq. (2.28b), in which Xs hs; substituting

this solution into Eq. (3.16) we obtain the equation

u42 (oz = '(z) (3.17)

which relates the eigenfunction (z) and parameters ,r of the stratified

layer to u2 . Then u2 (x,z) can be estimated if X is known. Substituting our

second-order estimates of a,a and ' (Appendix B), and our experimentally de-

rived estimate of X into Eq. (3.17), we find that

u2 (o,z) = 3.65{-0.17 + e-Z / [3514.55sin( -- ) + 2.18cos-8)]} m s- (3.18)

where z is in kilometers. At z=O, where the wave amplitude should be largest,

Eq. (3.18) gives

u2 (o,o) = 7.3 m s- 1 ,  (3.19)

which compares very well with the observed value of 7 m s- 1 (see Fig. 8).

Again we have near agreement of theory and experiment!

The agreement of the theoretically estimated wave amplitude u2 (O,o) and

that observed is obviously fortuitous because the wave amplitude at z=100 m is
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nearly 12 m s-1 (Fig. 8), whereas theory stipulates that wave amplitude de-

creases with height! Furthermore, we infer from Fig. 8 that u2 (o,o) is likely

to be 13 m s-1 , almost twice the amount indicated by theory. Radar data

(Table 3.2) show that u2 (0,450 m) >7 m s-1, whereas Eq. (3.18) produces a

value of about 4 m s-1 at z=450 m, about half that observed! Finally, weakly

nonlinear theory indicates that waves of permanent form must have amplitudes

that are inversely dependent upon wave width X (i.e., Eq. 2.42e), but Fig. 14

shows that amplitude decreases by a factor of 2, whereas wave width X is

nearly constant (Table 3.2).

We attribute these large discrepancies to the premise that the wave is

strongly nonlinear, and thus we need to resort to higher order approximations

(i.e., use second-order and higher terms in Eq. (2.8a)) or, in what might be a

more profitable approach, to employ numerical methods that should produce

results in complete accord with observations. These numerical methods will be

developed and reported on in a subsequent report in which the effects of wind

shear will also be accounted for.

The surprisingly good agreement betweem theoretical estimates and ob-

served wave speeds and wave amplitude at the surface clearly demonstrates

that, if measurements near the ground were the only ones available, we could

realize excellent agreement between theory and observations (e.g., wave speeds

within 0.1 m s"I and amplitides within 0.4 m s-1 ) but for the wrong reasons.

Only because we had radar and tower observations well above the ground were we

able to infer that this agreement was anomalous and that the wave was strongly

nonlinear.
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3.5.2. Simplified strongly nonlinear theory to estimate amplitude

Although we shall not elaborate a theory of strongly nonlinear waves, we

can still estimate theoretically some of the velocities to be expected in

these waves, and these can be compared with measurements. For example, the

fact that air appears to recirculate in the wave leads us to conclude that,

within this portion of the wave, there must be a stagnation region at height

Zo, where the trapped outflow does not move relative to the wave. Therefore,

the air in this region must translate over the ground at the ground-relative

wave speed c. Then, after turbulence and K-H waves are filtered from the ob-

served u data, the peak perturbation in the u component of velocity should be

u2 (O,zo) + tuo(zo) = c - uo(zo). (3.20)

When the wave passes the tower, a peak perturbation velocity of about

12.8 m s-I occurs at the 176-m height (Fig. 6a), which is within the interval

100-200 m where we expect the altitude of stagnation to lie. Since in this

height interval u =-1i m s- 1, we then infer from Eq. (3.20), after inserting

c=12 in s- from Fig. 7 and +1 = i s-  that the peak wave velocity

u2 (o,zo) is 12 m s-1, in excellent agreement with the extrapolated observed

value seen in Fig. 8.
0

Let us now extend these ideas on strongly nonlinear waves to the radar

observations at 224530, when the wave had a speed c of about 13.3 m s-i

(Table 3.1) along the path passing through the tower, and the beam was at an

effective height of about 475 m (Table 3.2). From Fig. 2a we find that

Uo(4.75) = -7 m s " I and thus

c - u0 = 20 m s . (3.21)
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Because the path is about midway between the true azimuths, 3400 and 3470, we

deduce from Fig. 12 that u2 + Au° = 18 m s "I , about 2 m s-1 less than that es-

timated from Eq. (3.21). Of course an equality could be obtained only if the

stagnation height was at 475 m. Because the wave was stronger at 224530 than

it was at 2211, when it passed the tower, we expect the stagnation level zo to

be higher than the 100-200 m deduced for the later time. However, whether zo

has reached the beam height is in doubt, but the lower observed velocity (18

vs. 20 m s-1 ) suggests that the beam is still above zo .

Thus, using simplified arguments for strongly nonlinear waves, we are

able to explain the observed wave amplitudes.

3.5.3. Comparison of waveforms

To determine the functional form of u2 (Z,z), data obtained from Fig. 6a

for each minute of observation at the 256- and 444-m heights on the tower are

plotted onto Fig. 15. Also plotted in this figure are the theoretical wave-

forms (solid lines) obtained from Eqs. (2.3a and e) in which u2(o,h) is

normalized to fit the data. The half amplitude width t1/2 when multiplied by

c (= 12 m s-1 when the wave passes the tower) gives 1/2' which is plotted in

Fig. 8. We notice that the wind at 444 m AGL fits, reasonably well, the theo-

retical waveform, although the data suggest a faster decrease of u2 at the ex-

tremities of the wave. Chen (1985, Fig. 7) compared vertical wave velocities

with those determined by theory, and found very good agreement at all heights.

At the height of 266 m (and also at lower heights) u2 (t) data show the

wave crest to be more rounded and the sides to be steeper than indicated by

theory. This could be anticipated because the numerical results of Tung

et al. (1982) show that strongly nonlinear waves do have more rounded crests

and steeper sides. Furthermore, Cummins and Le Blond (1984) compared
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Figure 15. Comparison of the theoretical solitary waveform from 
weakly non-

linear theory (solid line), and the observed waveform x) for

heights (a) 444 m and (b) 266 m. t1 /2 is the wave's half-width

(in time units) at half-amplitude.

waveforms of observed oceanic solitary waves with 
those shapes produced by

weakly nonlinear theories, and they also found in all 
cases, that the observed

waveforms exhibited more rounded crests and steeper 
sides. As in the case of

the atmospheric solitary wave examined herein, 
the oceanic waves had ampli-

tudes that violated weakly nonlinear assumptions. 
Therefore the departure of

the observed waveform from that given by weakly 
nonlinear theory might be
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explained by the large amplitude of the observed wave. On the other hand,

Tung's numerical results were given for fluid depths 4 times the vertical

scale of stratification, and certainly the ocean is not infinitely deep. Con-

sequently the finiteness of the fluid depth, and the nearness of the upper

boundary to the lower one, might also have influenced the shape of the wave.

To summarize, although the observed waveform and wave speed agree well with

those stipulated by weakly nonlinear theory, wave amplitudes differ markedly.

3.5.4. Attenuation due to the vertical propagation of gravity waves

When the upper layer is stratified, as in this case (Fig. 2), waves can

propagate vertically, thus robbing the solitary wave of its energy. Figure 14

shows that wave amplitude decreases as a function of time and we now estimate

whether vertically propagating gravity waves can account for this attenuation.

The solitary wave packet contains a continuum of spectral components with

wavelengths ranging from extremely long (compared to X) to those shorter than

hs . The stratified upper layer can support propagation of the long wavelength

components which carry away energy from the solitary wave.

Maslowe and Redekopp (1980) have estimated the rate at which the stream

function amplitude *o will decrease when the upper layer is weakly stratified

with a Brunt-Vaisala frequency N. Adapting their theoretical formulations we

can show that the equation controlling the horizontal velocity perturbation

u2 (o,z,t), in the inversion layer, is

du 2du 2(o,z,t) _ u2 (o,z,t)
dt pIz) 0 z < h (3.22a)dt '(z)

where

ax, (__.c3 3 ( ), (3.22b)

-2-
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f(s) : - - [12(B) -L (3.22c)

2 -c (3.22d)

0

and 12, L2 ere modified Bessel and Struve functions of second-order (Abramo-

witz and Stegun, 1968). The solution of Eq. (3.22a) is

u2 (o,z ,t o )

u2  = u2 ( zo  t o ) /  (3.23)

3
where to is a reference time. Substituting X = 1.6 x 10 m, Eq. (8.12a) for

a, Eq. (B.1O) for co, and the estimate hs = b
-1 = 350 m into the above we ob-

tain

= 2.26,

f(s) = 0.1,

Y = 4.54 x 10-6 m- 2 .

From Fig. 14 we determine that, for z = 450 m, u2 (o,450,to) = 11.8 m s " I at

to = 224330. Substituting this value and y into Eq. (3.23), and using

Eq. (B.11) to evaluate @'(450), we estimate u2 at the next data time (225030)

to be 0.5 m s-1, considerably less than the 8.8 m s"I observed at that time!

Accepting the theory we need to explain why the wave lasted as long as it did.

Perhaps an elevated inversion layer may have reflected energy back to the

ground (Crook, 1987). On this day an elevated inversion having a Ovo change

of 2 K in a layer of about 100 m thickness was observed at a height of 0.6 km

AGL in the 1800 CST sounding. This elevated inversion increased in height to

about 4.1 km in the sounding 12 h later. Assuming a linear increase in the

inversion height during this interval, this inversion would be 3.2 km AGL at
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the time of the solitary wave. Further numerical analyses would have to be

performed to determine how much of the energy in the upward propagating grav-

ity waves would be returned to the lower layer, and whether this return is

sufficient to account for the slow decrease of the observed wave amplitude.

On the other hand, wind curvature uo" could duct gravity wave energy (Chimonas

and Hines, 1986; Crook, 1987).

3.6. Comparison with Numerical Results for Strongly Nonlinear Waves

Results presented in the preceding section support thi view that the wave

is strongly nonlinear. So we are naturally led to make comparisons with the

numerical solutions for the case of large amplitude waves of permanent form.

Tung et al. (1982) presented numerical results that relate stream function am-

plitude e4o ima to wave speed c' (wave speed in the coordinate frame ad-

vecting with the fluid) for fluids of various depths, the deepest of which was

40 times the scale of stratification h.. However, Tung et al. (1982) solved

for the strongly nonlinear wave characteristics for waves propagating in a

medium in which the vertical profile of density change is described by a hy-

perbolic tangent function, whereas we have fitted evo data with an exponential

function. Nevertheless, the results should be similar, because the scales of

stratification and net change in N2 (z) should be the same since both the tanh

and exponential functions fit the evo data quite well (F g. 3). The hyper-

bolic tangent function that fits the 0vo data well is

0vo =294.4(1 + 4.755 x 10- 2 tanh szj (3.24)

where

-3 -1
s = 2.07 x 10 m
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We have taken from Tung et al. (1982; Fig. 14, H=4O) their numerically

evaluated normalized stream function amplitude (max/c'hs) values and replot-

ted them onto Fig. 16, except that we use a wave speed c' normalized to the

linear wave speed co for the hyperbolic tangent profile. Then, interestingly,

the strongly nonlinear wave speed shows a linear dependence versus normalized

stream function amplitude. The linear dependence can be expressed as

cL' ( CI + 0.55 -(3.25)

2.5

STRONGLY NONLINEAR WAVE THEORY
(TUNG et a1.,1982, H-40 hs )

o 2.00
Z WEAKLY NONLINEAR-/
O WAVE THEORY /
ILI

uJ
LU

> 0
3: 1.5 /0

10 RADAR DATA

/ +,x TOWER DATA/

(266,444 m)
/

1.0J
0 1.0 2.0 3.0

STREAM FUNCTION AMPLITUDE qmax/C'hs

Figure 16. Normalized wave speed versus normalized stream function amplitude.

c' is the wave speed relative to the ambient air, which advects in

a northerly direction.
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The scalings of the axes depend on how hs is defined, and we use a definition

slightly different from that used by Tung et al. Our definition, which we now

develop, is based upon the comparison of analytical solutions of weakly non-

linear theory with numerical ones for the limit point %iax +0.

To compare analytical and numerical results, as well as data, we can use

Eqs. (2.33f and g) to obtain

max 4 (1 -, (3.26)c- = T -
S s

which expresses the normalized stream function amplitude, for weakly nonlinear

waves, in terms of wave speed. Now we can adapt the eigenfunction solutions

given by Benjamin (1967) for a hyperbolic tangent profile of density stratifi-

cation. Thus we find that

tanh sz (3.27a)

and

K2 = 2s2 , (3.27b)

which are the eigenfunction and eigenvalue K N2 (o)/c 0 (see Appendix B) for

the v profile given by Eq. (3.24). Tung et al.'s plotted numerical data

suggest that Amax +0 when c2 /(c')2 2.2, where

2 gA 0 ohs
C ( voO) (3.28)

is a scaling velocity equal to the speed of a linear wave propagating in a

medium composed of two homogeneous layers having a virtual potential tem-

perature difference Av0O equal to the total change in evo across the upper

half of the hyperbolic tangent profile (i.e., in our case, above the ground).

Although Tung et al.'s numerical solution applies -.,en a rigid boundary is
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atop the upper layer at z=H=40 times 1/s, they did state that there is prac-

tically no difference between these results and those for the case in which

H=20 or 30 times 1/s. Accepting their solution as accurately representing the

situation of an infinitely deep upper layer, we conclude that when *max O,

ct = coo//22. Thus, using Eq. (3.27b) and solving for c2 in terms of c
2

gives

c
2

C2 = O0
0 Th (3.29)

and substituting this into Eq. (3.24), we obtain

max 4 coo
c-~~i 0 (3.30)

s s

Evaluating the a parameter for the hyperbolic tangent profile by substituting

Eq. (3.27a) into Eq. (2.40a), we find

a= 1.2s. (3.31)

We are now in a position to define hs . Tung et al. (1982) speci-

fied hs = l/s, in which case Eq. (3.30) becomes

= I0(1 - 00). (3.32)

s c

However, Eq. (3.32) does not agree with strongly nonlinear analysis in the

limit 4 max + 0 because this analysis shows that inax + 0 at c 2/C 2  2.2 and

not at 2.0 as determined by Eq. (3.32). Furthermore, the data of Davis and

Acrivos (1967a) seems to suggest that c2  '
00/( slre hn20we

max+0. This disparity between weakly and strongly nonlinear analysis can be

avoided if we define
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hs -1.1/s = 531 m, (3.33)

which is slightly larger than that obtained using Tung et al.'s definition.

In order to place our observations onto Fig. 16, we need to estimate

*max- But because we do not have u2 (x,z) at various heights from radar obser-

vations, we can only roughly estimate *max* To obtain an estimate we assume

that, as wave amplitude increases, the stream function retains the same func-

tional form suggested by nonlinear theory. This may not be a bad assumption

in view of the good agreement between weakly nonlinear waveforms u2 (x,h) and

the measured ones shown on Fig. 15, and because the u2 (o,z) data for z > 150 m

(Fig. 8) are consistent with the u2 (o,z) (dashed line on Fig. 8) derived from

the eigenfunction form based on weakly nonlinear theory. With this assumption

we can estimate *max from the u2(o,he) measurements made by radar and/or tower

anemometers. The amplitude of the u wave component, obtained from Eqs. (2.33a

and e), is,

Co,he he : max 1(e) (3.34)

where ~~'( ) is ~eh(h) Vale of *Maxhe ane ,bandfo
e

where '(h e is sosech2(She ), Values of u2(o,he) and he, obtained from

Table 3.2, are substituted into Eq. (3.34) to obtain *max at the equivalent

times te listed in the table. Corresponding to these te we obtain estimates

of c' from Fig. 11, and these are normalized by the linear wavespeed co =

10.6 m s-1 for waves propagating in the medium having the stratification given

by Eq. (3.24). The data of normalized stream function amplitude is then plot-

ted on Fig. 16. We have also added tower data at he = 266 m to see how well

they agree with data at 444 m. In principle, since the tower data are col-

lected at the same time, max should be the same at he = 444 m as it is at
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266 m. Figure 16 shows that they are coincident. The error bars denote the

uncertainties in *max/c'hs and c'/co because of the rms fluctuations of c'

data about the fitted curve (Fig. 11). We see fair agreement between observa-

tions and strongly nonlinear theory. However, observations show wave speed to

be consistently less than that given by theory. Perhaps we have underesti-

mated the advection velocity of the ambient wind. An increase of 1 m s1

would bring the cluster of four data points onto the line. On the other hand,

it is possible that the cooler, denser, trapped air slows the wave. The nu-

merical analysis of Tung et al. assumes the trapped fluid to have the same

density as the ambient air.

Even though weakly nonlinear theory is strictly valid for max /chs << 1,

it is of interest to determine how well this theory compares with that for

large amplitude waves, as well as with data. So we have also plotted values

of Eq. (3.26) onto Fig. 16, again assuming hs = 1.1/s. It is surprising that

weakly nonlinear theory agrees so well with numerical results, even for nor-

malized amplitudes as large as 1.3 or, equivalently, for displacements 6m as

large as 1.3 times the scale of stratification!

We should not be led by these good agreements that weakly and strongly

nonlinear theories are in complete accord for wave displacements as large as

1.3 hs because we have not considered wave width. Nonlinear waves have wave

amplitude, speed, and width that are all interdependent and, as we now show,

the good agreement with respect to wave amplitude and speed does not extend to

the wave's half-width, X. We have plotted onto Fig. 17 X (dashed line) com-

puted from Eq. (2.33f). That is,

8/co 0.75s
S= (c,/Co ) = (c,/C )_1 (3.35)

-103-



in which 8 = 0.75 co/s is obtained by substituting Eq. (3.27a) into

Eq. (2.40b). We also have plotted X data from Table 3.2. Now we see large

differences between data and X values obtained from weakly nonlinear theory.

For sake of completeness, we have also plotted values of X obtained from the

strongly nonlinear analysis of Tung et al. for the case H=4hs . Unfortunately,

Tung eL al. did not present data for other values of H. However, they did

plot streamlines for few values of c/co for the case H=40, and we have ex-

tracted rough estimates of X from these figures. We found X to be appreciably

larger than that for H=4hs, so much so that theory for H=40hs seems to esti-

mate a X significantly larger (by about 40%) than that observed! Because

our X data lie between theoretical estimates for H=4 and 40h., we conclude

that, in our observations, an effective upper boundary at which vertical ve-

locity is zero lies somewhere in the interval 2 to 20 km.

2.0
%-WEAKLY NONLINEAR
t WAVE THEORY

(H-,ox) - STRONGLY NONLINEAR

WAVE THEORY

C. (TUNG et aI.,1982, H-4 hS~

o 0 0 RADAR DATA
W 1.5 0 x TOWER DATAa.

0n 0 h,= 450 m
LUX

1.0 , I p
0 1.0 2.0 3.0

WAVE WIDTH X (kin)

Figure 17. Normalized wave speed versus wave width.
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Furthermore, we note that whereas weakly nonlinear theory gives x ,ono-

tonically decreasing with wave amplitude and/or wave speed, strongly nonlinear

analysis shows that wave width reaches a minimum value, 
at which point recir-

culation appears, and thereafter further increases in amplitude cause in-

creases of the wave's half-width. The relatively constant observed half-width

indicates that the wave has recirculation within it, and we see that data fall

within the speed range where strongly nonlinear theory suggest width to be

nearly constant.
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4.0. AVIATION WIND SHEAR HAZARD POTENTIAL OF THUNDERSTORM GENERATED
GRAVITY WAVE PHENOMENA

The principal hazard of the much studied downbursts is not necessarily

confined to the direct effects of downdrafts but, as Lee et al. (1978) pointed

out, the aircraft, in passing beneath a downdraft, "experiences first a strong

headwind, then roughly no horizontal wind at all as it enters the downflow

area, and finally experiences a strong tailwind. These wind shifts from head-

wind to tailwind, with a vector difference of 40 m s-1 or more in 4 km in the

horizontal, may be more dangerous than the well-organized gust front." One of

the earliest accidents that has been attributed to changes in headwind is that

reported by Stewart (1958) who described a "inicroburst-type" wind shear event

(Fig. 18) which downed a BOAC Argonaut on its take-off from the Kano Airport

!/ WIND

.000

SOO /

:;' .. WRECKAGE
"i:;,:-i! .TRACK OF AIRCRAFT

Figure 18. The unusual conditions which led to the Kano accident in 1956.

The height indications are those of the accident investigation

commi ttee (fruin Stewart, 1958.
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in Nigeria in June 1956. The investigating board concluded that "The accident

was the result of the loss of height and airspeed caused by the aircraft en-

countering, at approximately 250 ft after take-off, an unpredictable thunder-

storm cell which gave rise to a sudden reversal of wind direction, heavy rain,

and possible downdraft condition."

Much of the earlier research on wind shear hazard focused attention to

the gust front, which is often thought to be synonymous with the leading edge

of gravity currents. However, it is now known that gust fronts and associated

thin lines of reflectivity are observed at the leading edge of bores (Fulton,

1987) and solitary waves (Doviak and Ge, 1984) as well as gravity currents.

In its simplest form the gravity current is a shallow layer of laminar flow

having a leading edge that expands at a velocity dependent upon the depth of

the current, and the difference in density (or temperature) of the ambient

air, and that within the current (Von Karman, 1940). In this case, wind shear

hazards are minimal because the aircraft would only experience a net increase

in headwind. However, currents are not necessarily laminar, and they often

have at their leading edge a mass of recirculating air (gravity current head)

that is somewhat deeper than the current behind it, and it is this region of

circulating flow that also generates a pattern of increasing and decreasing

head or tailwind. Furthermore, it is the opinion of some (e.g., Linden and

Simpson, 1985) that the wind shear at the leading edge of a radially expanding

gravity current might be a more significant hazard than the change in head/

tailwind associated with the divergent flow of microburst. Support for this

contention is given in the flight pattern of the aircraft "Delta Flight 191,"

which apparently flew across a microburst (Fig. 19). The recorded flight path

and vertical velocity shows that the aircraft negotiated most of the micro-
0

burst with no significant departure from the glide slope, but upon entering
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Figure 19a. A conceptual model of the vertical airflow structure in the DFW

microburst, based on the analysis of flight recorder data.
Shaded contours are potential temperature (K); arrowed lines are

streamlines. Arrows are wind vectors (see velocity scale).

Dashed line represents the aircraft track.

the region near the leading edge of the gravity current, strong wave-like per-

turbations, similar to those observed in undular bores emanating from gravity

currents (Fulton, 1987, Fig. 17), appeared to have caused the aircraft to

rapidly lose altitude.

Hazardous low-altitude shear has been associated with mountain lee waves,

sea breezes, cold frontal passages, and more recently, with large-amplitude

gravity wave disturbances. Gossard (1983) observed gravity waves that had

wind speed changes of as much as 20 m s "1 (40 kt) in a distance of 5 km

v (3 mi ). Gravity waves are seen to be evolving out of the leading edge of

thunderstorm-generated gravity currents (Fulton, 1987).

i Although there is no documentation with conclusive evidence linking soli-

tary waves to crashes, there are accidents in which solitary waves cannot be
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Figure 19b. A time series plot of vertical wind component (w) and static air

temperature (e) from the Delta Flight 191 flight recorder to-

gether with comments from the flight crew that were recorded on

the cockpit voice recorder (from Caracena et al., 1986).

dismissed as the cause. One of the best documented aircraft crashes, where

wind shear in fair weather was identified as the cause, occurred in Bathurst,

New South Wales, Australia. In that case, investigators determined that the

aircraft experienced a 30 m s-1 (60 kt) airspeed change in less than 24 s

(Christie and Muirhead, 1985). Furthermore, a study by Anderson and Clark

shows that, of 43 meteorological ly-related wind shear incidents in Australia,
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only 16% could be attributed, with any certainty, to frontal and thunderstorm

activity (Anderson and Clark, 1979 and 1983). Thus, considering the insidious

nature of solitary waves and their frequency of occurrence, Christie and Muir-

head inferred that it is reasonable to assume that many of the remaining inci-

dents, and quite possibly some of the former, can be attributed to solitary

wave activity in the first few hundred meters of the atmospheric boundary

layer (Christie and Muirhead, 1983). It is to be emphasized that the hori-

zontal wind shear associated with the wave is strongest near the ground where

aircraft are most vulnerable.

The effect of a solitary wave on aircraft performance is complicated be-

cause it depends on the pilot's response to physical stimuli. Furthermore,

the response depends on the direction of approach into the wave. For example,

Fig. 20 reproduces the streamlines of a numerically modeled and an observed

DIRECTION OF WAVE PROPAGATION-0

A B

500-

Z(m)

DECEA ING INCESN

-8000 -4000 0 4000 8000
X(m)

Figure 20. Hypothetical flight path in a head-on encounter of a plane with a

solitary wave. Solid waves are streamlines from a numerical

model (Christie and Muirhead, 1982) and the dashed one is ob-

tained from observation (Doviak and Ge, 1984).
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solitary wave on which is superimposed a 3' glide path for an aircraft ap-

proaching the wave propagating towards it. The streamlines are drawn for the

wind relative to a coordinate frame which movez with the wave. It can be de-

duced, for this case, that the aircraft would first experience an increase in

headwind and updraft followed by a decrease in headwind and downdraft. The

short-dashed line suggests the flight path that could result as a consequence

of aircraft response to the effects of shear. For aircraft approaching from

the opposite direction, the flight path would initially be below the glide

path and then, if the aircraft is still airborne, above with the possibility

that the aircraft would overshoot the runway.

The wind profile through a solitary wave differs from that encountered in

a microburst because a single-crested solitary wave produces only an increase

in headwind (or tailwind) and then decreases to the initial wind state,

whereas the microburst generates both headwind and tailwind components. That

is, the horizontal wind shift is unimodal in a solitary wave whereas it is bi-

modal in a microburst. However, a sequence of two or more waves is sometimes

observed and can give the pilot the appearance of alternating headwind and

tailwind components.

Although the observed solitary wave reported herein was 60 km (32 n mi)

from the storm that apparently generated it, it still had significant horizon-

tal and vertical shears (e.g., 4.4 x 10-3 s-1 and 60 x 10-3 s-1) of the hori-

zontal wind 90 m (300 ft) above the ground. The horizontal shear persisted

over a distance of about 1500 m (i.e., = 3/4 n mi). Short-wavelength waves,

which developed atop this solitary wave, intensified the horizontal shear to

7.6 x 10-3 s-1 over a distance of 700 m (0.4 n mi). For a perspective on the

significance of such shears on aircraft performance, note that a decrease in

headwind along an imagined 3' glide slope through the solitary wave is larger
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(38 kt or 19 m s-1) than the one (35 kt or 17.5 m s-1) that caused a 50-m

(150 ft) drop in altitude of a 747 aircraft on its approach into Melbourne,

Australia (Woodfield, 1983). Turbulence behind the wave possessed even

stronger horizontal shears with wind changes as large as 6 m s-1 (12 kt) over

a 130-m (400 ft) distance, or a shear value near 50 x 10- 3 s-1. An aircraft

landing at a speed of 72 m s-1 (140 kt) could experience a 6.2 m s-1 (12 kt)

headwind decrease in - 2 s. These large solitary wave shears were observed at

the tall-tower site when the storm was 60 km away. At points closer to the

storm the shear should be significantly larger. For example, the wave ampli-

tude observed by Doppler radar at 2245 CST for locations 45 km from the

storm's edge, was almost double that observed at the tower.

Christie and Muirhead (1983a,b) showed how an initially smooth long wave

with relatively benign shear can evolve under the influence of nonlinearities

and frequency dispersion into an amplitude-ordered family of solitary waves of

large amplitude and short half-amplitud, widths, in which shear is markedly

increased. Their work suggests that the intense, transient shear zones gener-

ated with these waves constitute a serious hazard to the safety of flight at

low altitudes.

Much effort in the research and development community is being expended

to develop equipment and techniques to detect phenc 2na, such as microbursts,

hazardous to safe flight. However, these phenomena are usually short-lived

with lifetimes often less than 5 minutes, and thus their timely detection and

communication of the potential threat they pose is extremely challenging.

Doviak and Lee (1985) suggested that it is equally important to focus effort

on the detection of the larger scale, more predictable phenomena that lead to

the formation of these transient hazards, in addition to seeking methods to

quickly detect and warn of the hazard itself. In this respect, the long life
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of the solitary wave lends itself to easy, early detection by high-performance

Doppler weather radars, if wave reflectivity is sufficiently intense.

It is remarkable that the storm outflow remained in the wave for dis-

tances of at least 60 km from the storm. Although storm outflows propagate as

gravity currents to large distances, it is suggested that gravity waves, and

in particular solitary waves formed by the interaction of the storm's down-

draft with the stable layer, can transport the outflow faster and probably,

with greater momentum, farther. Thus hazardous shear, normally confined to

regions close to the storms, might indeed be found at large distances from

them.

After observing laboratory simulations of radially diverging gravity cur-

rents, Linden and Simpson (1985) suggested that thunderstorm downdraft (micro-

burst) hazards might also be linked to wind shear and vertical drafts of an

intense rotor which forms at the gravity current front. The vorticity in the

rotor increases to conserve angular momentum as the vortex tube is stretched.

Near the source the intensification of vorticity was largest and produced a

vortex that occupied almost the full depth of the gravity current to become

nearly cut-off from the following flow.

To answer the question whether solitary waves pose a shear hazard to air-

craft we reviewed the paper of Rudich who summarized the weather conditions

leading to 33 weather-involved air carrier accidents that have been investi-

gated and formally reported on by the National Transportation Safety Board for

incidents that occurred during the period 1962-1984 (Rudich, 1986). In 11
S

cases fatalities occurred, and in 27 cases injuries and/or damage to the air-

craft occurred in which wind shear may have been the cause, or the contribut-

ing cause, of the accident. In nine of the fatal cases (18 of the nonfatal

ones) the aircraft either penetrated thunderstorm rain or was in the area of
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thunderstorm rain. In one case the aircraft flew through heavy rain, but

thunder was not reported. If thunderstorm generated waves were involved in

these accidents they would likely be in their earliest stage of formation but,

of course, it is at the time when waves might have the largest amplitude. For

example, wave-like perturbations are seen in the outflow gravity current of

the thunderstorm that caused the crash of Delta Flight 191 at the Dallas/Fort

Worth International Airport on 2 August 1985 (Caracena et al., 1986). In only

one fatal accident was wind shear noted as a possible cause without rain being

mentioned, and therefore it is possible that waves might have been present.

In two of the fatal cases, it was reported that the aircraft was near, or had

entered a roll cloud that was out in advance of a squall line which produced

moderate rain. The presence of a roll cloud is strong evidence for the exist-

ence of a horizontal rotor and the formation of a wave. In nine of the non-

fatal accidents there were no reported thunderstorms in the vicinity of the

accident, and thus it is possible that waves or wave-induced turbulence might

have been the cause or a contributing factor of the accidents. Thus, waves

might be implicated in 11 of the 33 investigated accidents.
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5.0. SUIMARY AND CONCLUSIONS

To understand the interrelationships between the observed solitary wave

parameters and ambient environment we have reviewed weakly nonlinear wave

theory and made a detailed study of an observed solitary wave. Because the

wave was propagating in a sheared environment, we have examined the governing

equations for sheared ambient flow and have deduced that, for the observed am-

bient environment, the Taylor-Goldstein equation is the necessary eigenfunc-

tion equation to be solved. Analytic solutions to this equation are not eas-

ily obtained, especially for the vertical profiles of 0vo and uo encountered

in practice, so to derive an approximate one we have ignored the wind curva-

ture term. Although this might first appear to be an oversimplification, the

work of Tung et al. (1981) suggests that the solitary wave solution to the

nonlinear evolution equation is unchanged by the presence of shear. Neverthe-

less, we found that shear had to be considered when computing the advection

speed of the ambient environment, and also when estimating the wind perturba-

tions caused by the wave vertically transporting horizontal momentum. Fur-

thermore the upper boundary can exert an enormous influence on the wave speed

(and probably the waveform), and thus its location may be of crucial impor-

tance in numerical models in which this boundary is usually placed, for prac-

tical reasons, at a finite distance above the layer of stratification. For

example, when the upper boundary is infinitely far above the stratified layer,

the wave speed is twice that when the boundary is at the top of the layer.

The thunderstorm that generated the solitary wave was traversing the

medium at speeds (= 25 m s-1) that would be considered "supersonic" with re-

spect to the solitary wave speed. Because large amplitude waves have ampli-

tude-dependent speeds, and because the thunderstorm traversed an advecting at-

mosphere, we derived a modified Mach relation to compute wave speed from the
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measured storm velocity and the convex shape of the wave front. This wave

speed showed fairly good agreement with wave speeds computed from tracking

wave front positions versus time along lines of energy propagation paths.

The surprisingly good agreement of observed wave speed and amplitude at

the surface, compared with estimates from weakly nonlinear theory, clearly de-

monstrated that, if measurements near the ground were the only ones available,

we could realize excellent agreement between theory and observation (i.e.,

wave speeds within 0.1 m s- 1 and amplitudes within 0.4 m s-1), but for the

wrong reasons. Only because we had radar and tall tower measurements well

above the ground were we able to infer that this agreement was anomalous and

that the wave was strongly nonlinear.

We were then led to compare results of numerical solution for strongly

nonlinear waves in a shearless environment. In spite of the fact that verti-

cal shear was significant (i.e., = 10-2 s-1 ) the observed wave characteristics

agreed well with that estimated from theory when vertical transport of hori-

zontal momentum and advection were accounted for. Although weakly nonlinear

theory shows that wave amplitude Im must have an inverse relation to wave

width 11/2 in order for the waves to have permanent form, Tung et al. (1982)

showed that large-amplitude waves with trapped circulation can have permanent

form, but then the inverse relation between I and Z/2 is no longer valid.

The relationship between wave amplitude and wave speeds, given by weakly

nonlinear theory, agree surprisingly well with both data and the theory for

strongly nonlinear waves; even for peak wave displacements as large as 1.3

times the scale of stratification hs (Fig. 16). However, this agreement does

not extend to wave width x112. The observed wave widths are much larger than

those given by weakly nonlinear theory, but are in accord with the numerical

results of Tung et al. (1982), who show that wave width reaches a minimum
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value when recirculation appears within the wave at which instance the normal-

ized stream function amplitude */c'h s equals about 0.9. Further increase in

wave amplitude brings increases in wave width, whereas weakly nonlinear theory

shows width to decrease monotonically with wave amplitude.

Data suggest that the observed solitary wave had trapped thunderstorm air

which was cooler and drier than the wave's ambient environment and thus, being

more dense, leaked out the rear of the wave. The presence of this cool pool

of air behind the wave can complicate the interpretation of measurements, if

they are made only with instruments near the ground, because temperature drop

and wind shift data might be misinterpreted as evidence of an advancing grav-

ity current on top and in advance of which wave-like perturbations can form.

However, observations with tall-tower and Doppler radar show that this pool of

air is very shallow (less than 100 m) air leaking out the wave. Furthermore,

the thunderstorm outflow appears to be guided by the wave and to flow down the

wave's axis.

The results of this study suggest a scenario for the evolution of the

solitary wave (Fig. 21). A thunderstorm downdraft generates a gravity current

and a horizontal rotor at its leading edge. If the gravity current and the

rotor are also embedded in an inversion layer, they launch a wave-like dis-

turbance that propagates at speeds determined by wave amplitude and the verti-

cal profile of wind and virtual potential temperature of the ambient environ-

ment. But because the gravity current front has a speed that is dependent on

the depth of the current, and because this depth is continually decreasing,

the frontal speed will constantly diminish, thus allowing the wave to propa-

gate out ahead of the current. As the wave propagates away from the gravity

current, it drags the vortex of outflow along with it, separating the vortex

from its source. The wave and circulating outflow air continue to propagate
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Figure 21. A scenario for the evolution of the thunderstorm-generated soli-

tary wave.

away at velocities faster than any wave of small amplitude, and thus can leave

the gravity current farther and farther behind. The recirculating trapped air

in the wave creates strong shear near the earth's surface. However, as the

trapped outflow slowly leaks out the rear of the wave, leaving behind a shal-

low pool of cool air, its amplitude decreases. After the outflow air is com-

pletely gone, the wave can continue on as a wave of permanent form, if energy

loss due to ground friction and radiation can be ignored. If the part of the

troposphere that overlies the inversion layer is not neutrally stable, wave

energy will be radiated away from the inversion layer. Furthermore, because

the inversion layer would have finite horizontal extent, especially if formed
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by the cold air of thunderstorm outflows, it is expected that the solitary

wave would dissipate upon encountering the boundaries of the pool of cool air.

There is the possibility that some of the wave energy might be reflected, but

this would be small because the change in inversion characteristics is not

abrupt.

Recently Chimonas and Nappo (1987) gave a different interpretation for

the generation of this wave. They concluded that all its well-defined charac-

teristics are consistently modeled as a thunderstorm-generated bow wave,

ducted in the boundary layer. Furthermore, they suggested that secondary fea-

tures, such as the later onset of turbulence, the solitary echo in the radar

return, and the apparent rarity of such events, can also be understood through

a bow wave model. Their results are based on the observations reported by

Doviak and Ge (1984) and it is hoped that the more complete data analyses and

comparisons with nonlinear gravity wave theories, reported herein, have helped

to resolve some of the features of the data that puzzled Chimonas and Nappo as

well as us.

We have no conclusive evidence to date that solitary or gravity waves

have been a cause or a contributing factor of fatal accidents. Nevertheless,

the data, as meager as they are, suggest that strongly nonlinear solitary

waves can pose a hazard to safe flight and may have caused accidents. Thus,

they should be studied both experimentally and theoretically. Furthermore,

because it is the strongly nonlinear waves that pose the threat, theoretical

studies should resort to numerical models. Experiments must employ equipment,

such as tall towers, Doppler radar, and aircraft, that can provide the unam-

biguous observations far above the ground.
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APPENDIX A:

Upper-Layer Solution

For an upper-layer of constant density the vertical velocity W(X,Z,T)

satisfies Laplace's equation

a2 W 2 W
2 = 0 (A.la)

ax az

subject to the boundary conditions,

W(X,z,t) +0 as z + , (A.lb)

W(X,z,T) = w(,z,-) at z = h (A.lc)

where w(E,z,T) is the lower-layer solution and c -X. Since W1 satisfies

Laplace's equation to O(e ), the boundary condition (A.lc) can be expressed as

E 2W(X,h,T) = C2 Wl (,h,T) + 3 w2 ( ,hT) (A.2a)

to third order in E in which c -X. Therefore

w2 ( ,h,T) = 0 (A.2a')

and

W (X,h,T) = wI  - @ ,) - 1 af(X,) (A.2b)1~ ax

WI(X,z,T) + 0 as z +
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where f(Xr) = o2/(X2+x )2 This set of boundary conditions and (A.la) de-

fine a Dirichlet problem whose general solution is given in many mathematical

texts (e.g., Hildebrand, 1956, p. 453). The solution WI(X,z,t) satisfying

these boundary conditions is

W , 1 Lk(zh) f ( cos k(X'-X)dX'] dk. (A.3)

Integrating the inner integral by parts and then reversing the order of inte-

gration, we obtain

+" k-

e= r - 1 k z-h) sin k(X'-X)dk] dX'. (A.4)
W1 (X,z, T) 1- . f(X') 1k00

-00 0

The inner integral can be evaluated (Gradshteyn and Ryzhik, 1965, p. 490),

yielding

W'( X , z T) L f(X',r) (X-X') (z-h) dX(.
= -i 2(X-X' + (z-h) 2 2  (
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APPENDIX B:

Eigenfunction Solution

We seek a second-order solution to the eigenfunction equation

N2 (o) -z
+ e € =0 (3.13)

by using the iterative method of Stodola and Vianello (Hildebrand, 1956,

p. 218). We first write Eq. (3.13) in the form

2-K 2-bz (B.1)

where K2 - N2 (o)/c2 is the eigenvalue that needs to be determined along with

the eigenfunction p. Equation (8.1) and the boundary conoitions constitute a

Sturm-Liouville system which determines a set of eigenvalues K2 (n) (n =

1,2,3,...) and consequently a set of wavespeeds c (n) to each of which there is
0

a set (modes) of eigenfunctions O(n) all of which are -olutions to (B.1). We

are most interested in the dominant mode O() corresponding to the smallest

eigenvalue K2 (1). The method of Stodola and Vianello is one that leads to an

estimate of the smallest eigenvalue. To implement this iterative technique we

first replace € on the right side of (B.1) with a conveniently chosen first-

order approximation 01. We shall henceforth delete the superscript (n) but it

should be understood that the solutions we seek correspond only to the domi-

nant mode. We choose for @p the function

= sin az, a = (B.2)
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which is our first-order solution (2.44) when Eq. (2.45b) is substituted into

it. We then integrate (B.1), after (B.2) is substituted on the right side, to

obtain

= K2 e'bZ [b sin (az) + a cos (az)] + S1  (B.3)
(a z+b 2)1

where S1 is an integration constant. Integrating once again we obtain

F(Z) - K2e-bZ [(a 2 -b 2 )sin(az)-2ab cos(az)] + S1z + S (B.4)
(a 2+b2 )2

S1 , S2, the integration constants, are to be determined from the boundary con-

ditions,

*(o) = 0 (B.5a)

'(h) = 0. (B.5b)

From boundary :ondition (B.5a) we find that

S 2abK
2

2 =(a 2+b2 )2

and from boundary condition (B.5b) we obtain

SbK2e-bh
(a2+b 2 )

Thus the eigenfunction, at the second iteration, is
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S
2  e-bZ 22

2(z) K K2iaZ ) [(a 2-b 2 )s in(az) -2ab cos(az)]
2 ~(a 2+b 2)2

(3.6)

_ bze -b h  2ab 2
(a 2 ) + 2 (a2-+b2)2} f2 (z)

If this process is repeated indefinitely wherein On1 (z) is substituted

on the right side of (B.1) and the nth iterative solution n(z) is obtained,

it can be shown that the ratio fn (z)/n (z) converges exactly to the smallest

eigenvalue K and hence n converges to the dominant eigenfunction. An esti-

mated eigenvalue K2 is obtained at the second iteration by equating the inte-

grals

h h 2

f 41(z)dz 
= f €2 (z)dz =K 2 of 2 (z) dz (B.7)

0 0 0

so that the solutions @1,,2 agree in an integral sense.

Solving (B.7) for K2 we have for our estimate
2

K2 = 14.35 km 2 = 14.35 x 10- 6 m_2  (B.7a)

of K2 and so our second-order estimate of wave speed is

Co2 = N(o)/K 2 = 9.6 m s- 1. (B.7b)

Normalizing 2 (z) so that i2 (h) = 1 we obtain the normalized eigenfunction

= 1.23 - 0.17z - e"bz[0.99 sin(az) + 1.23 cos(az)] (B.8)
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when

0 < z < 1.14 km.

This solution is plotted in Fig. B.1. To ascertain the accuracy of this

approximation Eq. (B.1) has been numerically integrated from the top down us-

ing the Runge-Kutta method and, initially, the estimate (B.7a) as a trial

1.5

NUMERICAL SOLUTION

ANALYTICAL SOLUTION 0 2 (z) (Eq.B.6)

1.01

-r 0.5

0.2 0.4 0.6 0.8 1.0

NORMALIZED EIGENFUNCTION 6(Z)

kI

Figure B.I. Comparison of the analytic eigenfunction solution 2(z) and that

estimated through numerical integration using iterative proce-

dure.

eigenvalue, and then iterating eigenvalues until the eigenfunction € satisfies

the boundary condition =0 at z = 0 to the sixth decimal place. The result-

ing eigenvalue is
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K2 = 1.345 x 10- 5 m-2  (B.9)

which is close to that initially estimated. The numerically evaluated eigen-

function is also plotted on Fig. B.1 demonstrating that Eq. (B.8) is an excel-

lent approximation to the more exact numerical solution.

Using the eigenvalue in Eq. (B.9) to compute co we find that

c =N(o)= 9.9 m s-1  (B.10)o K

which compares reasonably well with our second-order estimate 9.6 m s- 1 in

Eq. (B.7b).

Now to determine the parameters a, for the steady-state nonlinear wave

Eq. (2.25) we need to evaluate (2.24). The derivative '(z),

'(z) = - 0.17 + e-bz[ 4 .55 sin(az) + 2.18 cos(az)] km- I  (B.11)

is needed only in the approximate solutions for c,a given by (2.40). Substi-

tuting (B.9) into (2.40) and numerically integrating we find

a2 =2.39 x 10- 3 m-1 (B.12a)

2 3.49 x 10 m2 s (B.12b)
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APPENDIX C:

A Modified Mach Relation for Amplitude Dependent Wave Speeds

Consider a storm moving in a homogeneous medium at a constant velocity Vs

along a straight line and continuously generating a gravity wave disturbance

which propagates with a time dependent velocity c(t) related to its time de-

pendent height (i.e., its amplitude). Because theory shows that gravity waves

of finite amplitude have speeds faster than infinitesimal waves, and because

it is assumed that amplitude decreases as the wave progresses away from the

source, the wave front will have the curvature shown in Fig. C.1. Paths of

VsAt k- Storm Track Storm V3

1

.Tangent Line

B CM(t)=m C,,(t)= sin

,,,, 
At-O sin(y+pO

Figure C.I. Geometric construction to derive a modified Mach relation.

energy travel (rays) in homogeneous media are straight (Whitham, 1974, Ch. 14,

p. 254) so rays will be parallel to one another and intersect the source path

at an angle p. Thus after time t (reference time t=O is when d2 = 0) the wave

front would have propagated along ray #1 a distance
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r7

t+At t t+At t
d= f c(t)dt = f c(t)dt) + f c(t)dt f c(t)dt + c(t)At,

0 0 t 0

where c(t) is the average wave speed along the incremental path A-C whereas

the distance traveled along ray #2 is

t
d2 = f c(t)dt

0

The limit
lim d1-d2 = c(t)
At 40 At

defines the wave speed at B at the time t. Now construct a line tangent to

the front at B and apply the law of sines to the triangle ABC, that is,

_- Vs At Vs At
sin(y) sin (180-y- p) = si n(y+j)'

to derive the relation

Vssiny
c(t) = s'in(y+u) (C.I)

in the limit At*O, where y is the angle between the source path and the tan-

gent line.
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